Problem
Iahub got bored, so he invented a game to be played on paper.
He writes n integers a1, a2, …, an. Each of those integers can be either 0 or 1. He’s allowed to do exactly one move: he chooses two indices i and j (1 ≤ i ≤ j ≤ n) and flips all values ak for which their positions are in range [i, j] (that is i ≤ k ≤ j). Flip the value of x means to apply operation x = 1 - x.
The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub.
Input
The first line of the input contains an integer n (1 ≤ n ≤ 100). In the second line of the input there are n integers: a1, a2, …, an. It is guaranteed that each of those n values is either 0 or 1.
Output
Print an integer — the maximal number of 1s that can be obtained after exactly one move.
Examples
input
5
1 0 0 1 0
output
4
input
4
1 0 0 1
output
4
Note
In the first case, flip the segment from 2 to 5 (i = 2, j = 5). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1].
In the second case, flipping only the second and the third element (i = 2, j = 3) will turn all numbers into 1.
题目大致意思为:有一串01串 问经过一次01变换后 在新的01串里 最多有几个1
#include<iostream>
#include<algorithm>
#include<string.h>
#include<vector>
#include<stdio.h>
#include<limits.h>
#include<cmath>
#include<set>
#include<map>
#define ll unsigned long long
using namespace std;
int main()
{
int n;
cin >> n;
vector<int>v;
for (int i = 0; i < n; i++)
{
int x;
cin >> x;
v.emplace_back(x);
}
int maxn = -1;//maxn记录出现0后离下一次出现1的最大距离
int res = 0;
int sum = 0;
for (int i = 0; i < n; i++)
{
if (v[i] == 0)
{
res++;
maxn = max(maxn, res);
}
else
{
res--;
if (res < 0)
{
res = 0;
}
}
if (res < maxn || res == 0)
{
sum += v[i];
}
}
cout << sum + maxn << endl;
return 0;
}