实验一 分治法
【实验目的】
1、深刻理解并掌握“分治算法”的设计思想;
2、提高应用“分治算法”设计技能;
3、理解这样一个观点:用递归方法编写的问题解决程序具有结构清晰,可读性强等优点,且递归算法的设计比非递归算法的设计往往要容易一些,所以当问题本身是递归定义的,或者问题所涉及到的数据结构是递归定义的,或者是问题的解决方法是递归形式的时候,往往采用递归算法来解决。
循环赛日程安排
一、实验内容:
设有n=2k个运动员要进行网球循环赛。现要设计一个满足以下要求的比赛日程表:
1、每个选手必须与其他n-1个选手各赛一次;
2、每个选手一天只能参赛一次;
3、循环赛在n-1天内结束。
按此要求,可将比赛日程表设计成一个n 行n-1列的二维表,在表中的第i行,第j列处填入第i个选手在第j天所遇到的选手。其中1≤i≤n,1≤j≤n-1。
将所有的选手分为两半,则n个选手的比赛日程表可通过n/2个选手的比赛日程表来决定。递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手时,比赛日程表的制定就变得很简单。
这种解法是把求解2k个选手比赛日程问题划分成依次求解21、22、…、2k个选手的比赛日程问题,换言之,2k个选手的比赛日程是在2k-1个选手的比赛日程的基础上通过迭代的方法求得的。
三、实验源程序及结果截图:
实验代码:
(1)递归
#include <iostream>
using namespace std;
#define N 8
void fun(int a[][N],int n, int temp)
{
int i, j;
if (n == 2) {
//左上角
a[1][1] = 1 ;
a[1][2] = 2 ;
a[2][1] = 2 ;
a[2][2] = 1 ;
}
else {
temp = temp / 2;
fun(a, n / 2, temp);
//填左下角元素,由左上角加2^(k-1)得到
for (i = temp + 1; i <= n; i++)
for (j = 1; j <= temp; j++)
a[i][j] = a[i - temp][j] + temp;
//填右上角元素,将左下角直接抄到右上角
for (i = 1; i <= temp; i++)
for (j = temp + 1; j <= n; j++)
a[i][j] = a[i + temp][(j + temp) % n];
//填右下角元素,将左上角直接抄到右下角
for (i = temp + 1; i <= n; i++)
for (j = temp + 1; j <= n; j++)
a[i][j] = a[i - temp][j - temp];
}
}
int main()
{
int a[N][N] = {
0 }, temp = N, i, j;
fun(a, N, temp);
cout <<"\t\t"<< N << "名运动员比赛日程安排表" << endl << endl;
cout << "选手" << "\t";
for (i = 1; i <= N-1; i++)
{
cout << "第" << i << "天" << "\t";
}
cout << endl;
for (i = 1; i <= N; i++)
{
for (j = 1; j <= N; j++)
cout <<" "<< a[i][j] << "\t";
cout << endl;
}
getchar();
getchar(