算法设计与分析实验一:分治法实现最近点对问题和循环赛日程安排问题(递归与非递归)

该博客探讨了如何使用分治法解决最近点对问题和循环赛日程安排问题。在循环赛日程安排中,通过递归将选手分成两半来构造比赛日程表。在最近点对问题中,通过选取中位数分割线,递归限制搜索范围,有效减少计算量。博客展示了递归和非递归的实验代码及运行结果。
摘要由CSDN通过智能技术生成

实验一 分治法

【实验目的】
1、深刻理解并掌握“分治算法”的设计思想;
2、提高应用“分治算法”设计技能;
3、理解这样一个观点:用递归方法编写的问题解决程序具有结构清晰,可读性强等优点,且递归算法的设计比非递归算法的设计往往要容易一些,所以当问题本身是递归定义的,或者问题所涉及到的数据结构是递归定义的,或者是问题的解决方法是递归形式的时候,往往采用递归算法来解决。

循环赛日程安排

一、实验内容:
设有n=2k个运动员要进行网球循环赛。现要设计一个满足以下要求的比赛日程表:
1、每个选手必须与其他n-1个选手各赛一次;
2、每个选手一天只能参赛一次;
3、循环赛在n-1天内结束。
按此要求,可将比赛日程表设计成一个n 行n-1列的二维表,在表中的第i行,第j列处填入第i个选手在第j天所遇到的选手。其中1≤i≤n,1≤j≤n-1。
在这里插入图片描述
将所有的选手分为两半,则n个选手的比赛日程表可通过n/2个选手的比赛日程表来决定。递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手时,比赛日程表的制定就变得很简单。
这种解法是把求解2k个选手比赛日程问题划分成依次求解21、22、…、2k个选手的比赛日程问题,换言之,2k个选手的比赛日程是在2k-1个选手的比赛日程的基础上通过迭代的方法求得的。

三、实验源程序及结果截图:
实验代码:
(1)递归

#include <iostream>
using namespace std;
#define N 8
void fun(int a[][N],int n, int temp)
{
   
	int i, j;
	if (n == 2) {
   //左上角 
		a[1][1] = 1 ;
		a[1][2] = 2 ;
		a[2][1] = 2 ;
		a[2][2] = 1 ;
	}
	else {
   
		temp = temp / 2;  
		fun(a, n / 2, temp);
		//填左下角元素,由左上角加2^(k-1)得到
		for (i = temp + 1; i <= n; i++)
			for (j = 1; j <= temp; j++)
				a[i][j] = a[i - temp][j] + temp;		
		//填右上角元素,将左下角直接抄到右上角 
		for (i = 1; i <= temp; i++)
			for (j = temp + 1; j <= n; j++)
				a[i][j] = a[i + temp][(j + temp) % n];
		//填右下角元素,将左上角直接抄到右下角 
		for (i = temp + 1; i <= n; i++)
			for (j = temp + 1; j <= n; j++)
				a[i][j] = a[i - temp][j - temp];
	}
}
int main()
{
   
	int a[N][N] = {
    0 }, temp = N, i, j;
	fun(a, N, temp);
	cout <<"\t\t"<< N << "名运动员比赛日程安排表" << endl << endl;
	cout << "选手" << "\t";
	for (i = 1; i <= N-1; i++)
	{
   
		cout << "第" << i << "天" << "\t";
	}
	cout << endl;
	for (i = 1; i <= N; i++)
	{
   
		for (j = 1; j <= N; j++)
			cout <<"  "<< a[i][j] << "\t";
		cout << endl;
	}
	getchar();
	getchar(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值