考研 |高等数学 Chapter 1

考研 | 高等数学 Chapter1

1. 迫敛定理 (夹逼定理)

  1. 数列型
    设:
    { a n ⩽ b n ⩽ c n lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n = A \left\{\begin{array}{l} a_{n} \leqslant b_{n} \leqslant c_{n} \\ \displaystyle \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=A \end{array}\right. {anbncnnliman=nlimcn=A
    则:
    lim ⁡ n → ∞ b n = A \displaystyle \lim_{n \rightarrow \infty} b_n=A nlimbn=A
  2. 函数型
    设:
    { f ( x ) ⩽ g ( x ) ⩽ h ( x ) lim ⁡ f ( x ) = lim ⁡ h ( x ) = A \left\{\begin{array}{l} f(x) \leqslant g(x) \leqslant h(x) \\ \displaystyle \lim f(x) = \lim h(x) = A \end{array}\right. {f(x)g(x)h(x)limf(x)=limh(x)=A
    则:
    lim ⁡ g ( x ) = A \lim g(x) = A limg(x)=A

2. 闭区间上连续函数的性质

  1. 最值定理
    f ( x ) ∈ C [ a , b ] f(x)\in C[a, b] f(x)C[a,b], 则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上一定存在最小值和最大值.

  2. 有界定理
    f ( x ) ∈ C [ a , b ] f(x)\in C[a, b] f(x)C[a,b], 则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上一定有界.

  3. 零点定理
    f ( x ) ∈ C [ a , b ] f(x)\in C[a, b] f(x)C[a,b], 且 f ( a ) f ( b ) < 0 f(a)f(b)<0 f(a)f(b)<0, 则存在 ξ ∈ ( a , b ) \xi \in (a, b) ξ(a,b) , 使得 f ( ξ ) = 0 f(\xi) = 0 f(ξ)=0

  4. 介值定理
    f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)C[a,b], 对任意的 η ∈ [ m , M ] \eta \in [m, M] η[m,M], 存在 ξ ∈ [ a , b ] \xi \in [a, b] ξ[a,b], 使得 f ( ξ ) = η f(\xi) = \eta f(ξ)=η

4. 单调有界的数列必有极限

  1. 例一:
    在这里插入图片描述
  2. 例二:
    在这里插入图片描述
  3. 例三:
    在这里插入图片描述

5. 几个重要的极限

  1. x → 0 x \rightarrow 0 x0:
    1. x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ e x − 1 ∼ ln ⁡ ( 1 + x ) x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x-1 \sim \ln(1+x) xsinxtanxarcsinxarctanxex1ln(1+x)
    2. 1 − cos ⁡ x ∼ 1 2 x 2 1-\cos x \sim \frac12x^2 1cosx21x2
    3. ( 1 + x ) a − a ∼ a x (1+x)^a-a \sim ax (1+x)aaax
    4. x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 x-\ln(1+x) \sim \frac12x^2 xln(1+x)21x2
  2. Δ → 0 \Delta \rightarrow 0 Δ0:
    1. sin ⁡ Δ Δ = 1 \frac{\sin \Delta}{\Delta} = 1 ΔsinΔ=1
    2. ( 1 + Δ ) 1 Δ = e (1+\Delta)^\frac1{\Delta} = e (1+Δ)Δ1=e
       

6. 0 / 0型

  1. u ( x ) v ( x ) ⇒ e v ( x ) ln ⁡ u ( x ) u(x) ^ {v(x)} \Rightarrow e^{v(x)\ln {u(x)}} u(x)v(x)ev(x)lnu(x)
  2. l n ( ) ⇒ ln ⁡ ( 1 + Δ ) ; Δ → 0 ln() \Rightarrow \ln{(1+\Delta)}; \Delta \rightarrow 0 ln()ln(1+Δ);Δ0
  3. ( ) − 1 ⇒ e Δ − 1 ∼ Δ ⇒ ( 1 + Δ ) α − 1 ∼ α Δ ()-1 \Rightarrow e^{\Delta}-1 \sim \Delta \Rightarrow (1+\Delta)^\alpha-1 \sim \alpha\Delta ()1eΔ1Δ(1+Δ)α1αΔ
  4. 例题
    1.
    lim ⁡ x → 0 ( 1 + 2 x ) sin ⁡ x − 1 x 2 = lim ⁡ x → 0 e sin ⁡ x ⋅ ln ⁡ ( 1 + 2 x ) − 1 x 2 = lim ⁡ x → 0 sin ⁡ x ⋅ ln ⁡ ( 1 + 2 x ) x 2 = lim ⁡ x → 0 x ⋅ 2 x x 2 = 2 \begin{aligned} \lim _{x \rightarrow 0} \frac{(1+2 x)^{\sin x}-1}{x^{2}} &=\lim _{x \rightarrow 0} \frac{e^{\sin x \cdot \ln (1+2 x)}-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x \cdot \ln (1+2 x)}{x^{2}} \\ &=\lim _{x \rightarrow 0} \frac{x \cdot 2 x}{x^{2}}=2 \end{aligned} x0limx2(1+2x)sinx1=x0limx2esinxln(1+2x)1=x0limx2sinxln(1+2x)=x0limx2x2x=2
    2.
    lim ⁡ x → 0 1 + tan ⁡ x − 1 + x x 3 = lim ⁡ x → 0 1 1 + tan ⁡ x + 1 + x ⋅ tan ⁡ x − x x 3 = 1 2 lim ⁡ x → 0 sec ⁡ 2 x − 1 3 x 2 ( sec ⁡ x = 1 cos ⁡ x ) = 1 6 lim ⁡ x → 0 tan ⁡ 2 x x 2 = 1 6 . \begin{aligned} & \lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+x}}{x^{3}}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+\tan x}+\sqrt{1+x}} \cdot \frac{\tan x-x}{x^{3}}\\ &=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}}\left(\sec x=\frac{1}{\cos x}\right)\\ &=\frac{1}{6} \lim _{x \rightarrow 0} \frac{\tan ^{2} x}{x^{2}}=\frac{1}{6} . \end{aligned} x0limx31+tanx 1+x =x0lim1+tanx +1+x 1x3tanxx=21x0lim3x2sec2x1(secx=cosx1)=61x0limx2tan2x=61.

7. 1的∞型

  1. ( 1 + Δ ) 1 Δ , Δ → 0 (1 + \Delta)^\frac1\Delta, \Delta \rightarrow 0 (1+Δ)Δ1,Δ0
  2. 恒等变形
  3. 例题
    1.
    lim ⁡ x → 0 ( 1 − x sin ⁡ x ) 1 x − ln ⁡ ( 1 + x ) = lim ⁡ x → 0 { [ 1 + ( − x sin ⁡ x ) ] 1 − x sin ⁡ x } − x sin ⁡ x x − ln ⁡ + x + 1 = e − lim ⁡ x → 0 x 2 1 2 x 2 = e − 2 \begin{aligned} &\lim _{x \rightarrow 0}(1-x \sin x)^{\frac{1}{x-\ln (1+x)}}=\lim _{x \rightarrow 0}\left\{[1+(-x \sin x)]^{\frac{1}{-x \sin x}}\right\}^{\frac{-x \sin x}{x-\ln +x+1}} \\ &=e^{-\lim _{x \rightarrow 0} \frac{x^2} {\frac12x^2}} = e^{-2} \end{aligned} x0lim(1xsinx)xln(1+x)1=x0lim{[1+(xsinx)]xsinx1}xln+x+1xsinx=elimx021x2x2=e2
    2.
    lim ⁡ x → 0 ( arcsin ⁡ x x ) 1 x 2 = lim ⁡ x → 0 { [ 1 + ( arcsin ⁡ x x − 1 ) ] } arcsin ⁡ x x − 1 x 2 = e lim ⁡ x → 0 arcsin ⁡ x − x x 3 = e lim ⁡ x → 0 ( 1 − x 2 ) 1 2 − 1 3 x 2 = e − 1 2 − x 2 3 x 2 = e 1 6 \begin{aligned} &\lim_{x\rightarrow0}(\frac{\arcsin x}{x})^{\frac1{x^2}}=\lim_{x\rightarrow0} \{ [1 + (\frac{\arcsin x}{x} - 1)] \}^{\frac{\frac{\arcsin x}{x}-1}{x^2}}\\ &=e^{\lim _{x \rightarrow 0} \frac{\arcsin x-x}{x^{3}}}=e^{\lim _{x \rightarrow 0} \frac{\left(1-x^{2}\right)^{\frac{1}{2}}-1}{3 x^{2}}}=e^{\frac{-\frac{1}{2}-x^{2}}{3 x^{2}}}=e^{\frac{1}{6}} \end{aligned} x0lim(xarcsinx)x21=x0lim{[1+(xarcsinx1)]}x2xarcsinx1=elimx0x3arcsinxx=elimx03x2(1x2)211=e3x221x2=e61
     

8. ∞/ ∞ 型

  1. 罗氏法则:

    1. 结论一:
      lim ⁡ x → + ∞ ln ⁡ a x x b = 0 ( a > 0 , b > 0 ) \lim_{x\rightarrow+\infty}{\frac{\ln^ax}{x^b}} = 0\qquad(a>0, b>0) x+limxblnax=0(a>0,b>0)
    2. 结论二:
      lim ⁡ x → + ∞ x a b x = 0 ( a > 0 , b > 1 ) \lim_{x\rightarrow+\infty}{\frac{x^a}{b^x}} = 0 \qquad (a>0, b>1) x+limbxxa=0(a>0,b>1)

lim ⁡ x → ∞ a m x m + ⋯ b n x n + ⋯ { = 0 , m < n = ∞ , m > n = a m b n , m = n \lim _{x \rightarrow \infty} \frac{a_{m} x^{m}+\cdots}{b_{n} x^{n}+\cdots} \quad \left\{\begin{array}{lll}=0, & m<n \\ =\infty, & m>n \\ =\frac{a_{m}}{b_{n}}, & m=n\end{array}\right. xlimbnxn+amxm+=0,=,=bnam,m<nm>nm=n

 

9. ∞ - ∞

  1. 无分母:
    在这里插入图片描述

  2. 有分母:
    在这里插入图片描述

10. ∞ 和 0 的0次方

  1. 转成 e ln ⁡ e^{\ln} eln
    在这里插入图片描述
     

11. Part 2

1. 连续

  1. lim ⁡ x → a f ( x ) = f ( a ) ⇒ f ( x ) 在 x = a 上 连 续 \lim_{x\rightarrow a}f(x)=f(a) \Rightarrow f(x) 在 x=a 上连续 limxaf(x)=f(a)f(x)x=a
  2. { f ( x ) 在 ( a , b ) 内 处 处 连 续 , f ( a ) = f ( a + 0 ) , f ( b ) = f ( b − 0 ) \left\{\begin{array}{lll}f(x)在(a, b)内处处连续, \\ f(a)=f(a+0), f(b)=f(b-0) \end{array}\right. {f(x)(a,b),f(a)=f(a+0),f(b)=f(b0)
    则 f ( x ) 在 [ a , b ] 上 连 续 则f(x)在[a, b]上连续 f(x)[a,b]

2. 间断

  1. I f lim ⁡ x → a f ( x ) ≠ f ( a ) If \quad \lim_{x \rightarrow a}f(x) \neq f(a) Iflimxaf(x)=f(a), 间断
  2. { f ( a − 0 ) = f ( a + 0 ) ≠ f ( a ) , a 为 可 去 间 断 点 f ( a − 0 ) ≠ f ( a + 0 ) , a 为 跳 跃 间 断 点 \left \{ \begin{array}{lll} f(a-0)=f(a+0)\neq f(a), \quad a 为可去间断点 \\ f(a-0) \neq f(a+0), \qquad\quad a为跳跃间断点 \end{array} \right. {f(a0)=f(a+0)=f(a),af(a0)=f(a+0),a
    在这里插入图片描述

12. 介值定理

{ 1. 函 数 值 之 和 2. ξ ∈ [ a , b ] \left \{ \begin{array}{lll}1.函数值之和 \\ 2.\xi \in [a,b] \end{array}\right. {1.2.ξ[a,b]
在这里插入图片描述

13. Note:

  1. sin ⁡ ( x + y ) = sin ⁡ x cos ⁡ y + cos ⁡ x sin ⁡ y \sin(x+y)=\sin x\cos y + \cos x \sin y sin(x+y)=sinxcosy+cosxsiny
  2. sin ⁡ ( x − y ) = sin ⁡ x cos ⁡ y − cos ⁡ x sin ⁡ y \sin(x-y)=\sin x\cos y - \cos x \sin y sin(xy)=sinxcosycosxsiny
  3. cos ⁡ ( x + y ) = cos ⁡ x cos ⁡ y − sin ⁡ x sin ⁡ y \cos (x+y) = \cos x\cos y - \sin x\sin y cos(x+y)=cosxcosysinxsiny
  4. cos ⁡ ( x − y ) = cos ⁡ x cos ⁡ y + sin ⁡ x sin ⁡ y \cos (x-y) = \cos x\cos y + \sin x\sin y cos(xy)=cosxcosy+sinxsiny
     

14. 习题:


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值