使用预训练的ResNet50提取图片的特征向量

本文介绍了如何使用预训练的ResNet50模型来提取单张图片及整个文件夹中图片的特征向量,涵盖从单张图片到批量处理的流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.提取单张图片的特征向量

import os.path

import torch
import torch.nn as nn
from torchvision import models, transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image

features_dir = './features'    # 存放特征的文件夹路径

img_path = "FullFrame1/images0001.png"     # 图片路径
file_name = img_path.split('/')[-1]        # 图片路径的最后一个/后面的名字
feature_path = os.path.join(features_dir, file_name + '.txt')    # /后面的名字加txt

transform1 = transforms.Compose([      # 串联多个图片变换的操作
    transforms.Scale(256),   # 缩放
    transforms.CenterCrop(224),  # 中心裁剪
    transforms.ToTensor()]     # 转换成Tensor
)

img = Image.open(img_path)   # 打开图片
img1 = transform1(img)       # 对图片进行transform1的各种操作

# resnet18 = models.resnet18(pretrained = True)
resnet50_feature_extractor = models.resnet50(pretrained=True)    # 导入ResNet50的预训练模型
resnet50_feature_extractor.fc = nn.Linear(2048, 2048)   
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值