倍增算法讲解 + 例题:AcWing 1273. 天才的记忆(RMQ问题的ST算法)

倍增,意思就是 “成倍增长”。

在进行 递推 时,如果 状态空间很大,通常的 线性递推 无法满足 时间空间复杂度 的要求,那么我们可以通过 成倍增长 的方式,只递推 状态空间 中在 2 的整数次幂位置上的值 作为代表。

当需要 其他位置上 的值时,我们通过 “任意整数可以表示成若干个 2 的次幂项的和” 这一性质,使用 之前求出的代表值 拼成 所需的值

所以使用 倍增算法 的一个基本要求:递推问题 的状态空间 关于 2 的次幂 具有 可划分性

倍增” 与 “二进制划分” 两个思想 互相结合,降低了求解很多问题的 时间空间复杂度

之前学习的 快速幂 其实就是 “倍增” 与 “二进制划分” 思想的一种体现。

在本篇中,我们研究 序列上的倍增问题,包括 求解RMQ(区间最值)问题ST算法

关于 求解最近公共祖先(LCA)等在树上的倍增应用,将在后续进行分析。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

题意

给定一长串数列,发出一系列询问:区间 [l,r] 中的 最大值,并输出结果。

数列中 元素个数范围<=2e5询问个数<=1e4,显然不可以暴力求解。

思路

对于这种 询问区间最大值 问题,当然做法可以有多种,比如之前探讨过的 线段树

不过本题如果用线段树求解,其代码不免显得过于冗长了,

对于此类问题我们有一个专门的应对利器,那就是 RMQ算法(用于解决 区间最大值问题),其 代码短小,而且 常用

首先要明确的一点是:RMQ算法 其本质其实是 动态规划,它还有其它的称谓:ST跳表

总体思想 就是:先 倍增预处理,之后进行 快速查询。(缺点:是一个 静态算法不支持修改

接下来进行 dp分析

f[i, j]状态表示:

i 开始,且长度为 2 ^ j 的区间中 最大值是多少

举个例子就很清晰了,

区间 [i, j] 中的最大值,显然可以将 此区间 均分左右两区间,答案显然为 从两半区间的最大值之中 取 max

对于 左半边区间,根据定义可得:f[i, j - 1]右半边也易得:f[i + 2 ^ (j - 1), j - 1]

最终得到 状态转移方程:f[i, j] = max(f[i, j - 1], f[i + 2 ^ (j - 1), j - 1])f[i][j] = max(f[i][j-1], f[i+(1<<(j-1))][j-1]);

查询:

对于 查询 区间 [l, r]最大值,设区间 [l, r] 的长度为 len,先找到 <=len2 的最大整次幂 k,意味着,2 * 2 ^ k 一定 满足 > len,因此 严格覆盖整段 [l, r] 区间 最多 需要 两段 长度为 2 ^ k 的区间。

因此对于 查询区间 [l, r] 中的最大值,我们可以 分为两部分最大值取 max 进行分析:

  • l 开始,长度为 2 ^ k 的区间最大值:f[l, k]
  • r - 2 ^ k + 1 开始,长度为 2 ^ k 的区间最大值:f[r - 2 ^ k + 1, k]

O(1)的时间复杂度 进行 查询max(f[l, k], f[r - 2 ^ k + 1, k])。(max(f[l][k], f[r - (1 << k) + 1][k]);

对于上面说到的 k ,我们也可以进行 预处理,或者 直接使用 math库函数log(x)(此函数 10为底),由于 k = log(2, len)向下取整),根据 换底公式 可得 log(2, len) = log(10, len) / log(10, 2)向下取整

时间复杂度:

O(nlogn + q)

代码

#include<bits/stdc++.h>

using namespace std;

const int N = 2e5+10, M = 18;
int n, q;
int a[N];

int st[N][M];

void init()
{
        for(int j=0; j<M; ++j)
        {
                for(int i=1; i+(1<<j)-1<=n; ++i)
                {
                        if(!j) st[i][j] = a[i];//当区间长度为 1 的时候直接赋值
                        else st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]);
                }
        }
}


int ask(int l, int r)
{
    int len = r - l + 1;
    int k = log(len) / log(2);

    return max(st[l][k], st[r - (1 << k) + 1][k]);
}


int main()
{
        cin>>n;
        for(int i=1; i<=n; ++i) scanf("%d", &a[i]);

        init();
        cin>>q;

        while(q--)
        {
                int l, r;
                scanf("%d%d", &l, &r);
                printf("%d\n", ask(l, r));
        }

        return 0;
}

关于 st表,我最近在牛客上做了一道好题,详情请戳 炸鸡块君与FIFA22

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值