AcWing 876. 快速幂、扩展欧几里得 求逆元(乘法逆元,费马小定理)

在这里插入图片描述
在这里插入图片描述

ps:“a整除b” 或 “b能被a整除” 或 “a|b”:b叫做a的倍数,a叫做b的约数(或因数)。

即:b%a==0,b是被除数,a是除数。

前置知识一:

乘法逆元定义

整数b,m互质,且对于 任意的整数a,如果满足
b|a(即b能整除a,a%b==0),则存在一个整数x,使得:

a/b≡a*x(mod m)(即(a/b) mod m = a*x)

则称 xb的模m 乘法逆元,记为:b^(-1)(mod m)

(联想一下:除b等于乘b的负一次方)

前置知识二:

费马小定理a ^ (p-1) ≡ 1 (mod p) (p为质数)

它由欧拉定理:a ^ φ(p) ≡ 1 (mod p) (a,p互质)推导而来(令p为质数即可,将p的欧拉函数φ(p)= p-1代入即可)。

思路及推导:

b存在乘法逆元的充要条件是:b与模数m互质

结论:当模数 m 为质数时,b^(m-2) 即为 b 的乘法逆元。

推导(结合费马小定理):

a / b ≡ a * x(mod m)
→ a / b ≡ a * b^(-1)(mod m)
→ a ≡ a * b * b^(-1)(mod m)
→ 1 ≡ b * b^(-1)(mod m)
→ 1(mod m) ≡ b^(-1) * b
根据费马小定理:a ^ (p-1) ≡ 1 (mod p) (p为质数)推出b ^ (m-1) ≡ 1 (mod m)(m也为质数

所以 b^(-1) * b = b^(m-1) = b * b^(m-2)。

结论:
当 b 与 m 互质的时候,且模数 m 为质数时, b 的乘法逆元为 b^(m-2)。

当 b 为 m 的倍数时,b 的逆元不存在。(此时也不满足 b存在乘法逆元的充要条件:b与模数m互质)

此时上方推导出来的式子:1(mod m) ≡ b^(-1) * b 不成立,因为 b 是 m 的倍数,因此 b * b^(-1) 也是 m 的倍数,所以 b * b^(-1) 模 m 只能为 0 而不能为 1 ,因此 b 的乘法逆元 b^(-1) 不存在。

因此对于 b 的乘法逆元 b^(m-2) 我们可以用快速幂来求。(快速幂)

注意快速幂这种方法只适合模数m为质数的情况(因为要用到费马小定理

一些小扩展:

快速幂求一个数 ai 的逆元比较理想,时间复杂度为O(log b)(b 表示几次幂,求逆元的时候即为 mod)。

但如果我们要将1~n每个数的逆元求出来则需要O(nlog b),所以当 n 的范围 <=1e7 时,这个方法是不太可取的,需要优化,优化方式为:线性求逆元(O(n))。

(为什么不可取呢?因为本题 mod 的范围是 <=2e9,log2e9 大概是 30,因此当 n<=1e7 时 nlog b ≈ 3e8 > 1e8,不合法)

题目保证输入的数据 p 是质数。(用快速幂求逆元的前提)

代码:

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
int qmi(int a,int k,int p)
{
    int res=1;
    while(k)
    {
        if(k&1) res=(LL)res*a%p;
        k>>=1;
        a=(LL)a*a%p;
    }
    return res;
}
int main()
{
    int n;
    scanf("%d",&n);
    while (n -- )
    {
        int a,p;
        scanf("%d%d",&a,&p);
        int res=qmi(a,p-2,p);
        if(a%p) cout<<res<<endl;
        else cout<<"impossible"<<endl;//当 b 为 m 的倍数时,b 的逆元不存在
    }
    return 0;
}

思考一下,如果p不是质数怎么办呢?

答:当p不是质数时,我们可以用扩展欧几里得求逆元

AcWing 877. 扩展欧几里得算法(递归,裴蜀定理,gcd)

推导:

a 有逆元的充要条件a与p互质,所以 gcd(a, p) = 1

假设 a 的逆元为 x ,那么有 a * x ≡ 1 (mod p)

等价于 ax + py = 1

因此后续的工作就相当于用扩展欧几里得算法求解上方的线性同余方程,并输出系数 x 即可

代码:

#include<bits/stdc++.h>

using namespace std;

#define int long long

void exgcd(int a, int b, int &d, int &x, int &y)
{
    if (!b) 
    {
        d = a, x = 1, y = 0;
        return ;
    }
    exgcd(b, a % b, d, y, x), y -= a / b * x;
}

signed main()
{
    int n; cin >> n;
    while (n --)
    {
        int a,p,d,x,y;
        cin>>a>>p;
        exgcd(a, p, d, x, y);//p放在标准线性同余方程b的位置
        if (d == 1) cout << (x + p) % p << endl;//保证x是正数
        else puts("impossible");//如不互质直接输出impossible
    }
    return 0;
}
  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要逆元的整数`a`和模数`m`,并输出结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值