2022 牛客暑期多校2 K - Link with Bracket Sequence I(线性dp)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
参考博文

题意:

已知 括号序列 a 是 一个 长度为 m合法括号序列 b子序列,求 可能的序列 b 的数量。(注意,子序列是可以不连续的

思路:

状态表示dp[i][j][k] 表示 在序列 b 的前 i 位中a 的前 j 个字符 包含在 b,且 左括号右括号 j 个的方案数

根据状态表示,最后的答案是:dp[m][n][0]
(这也是首先应该明确的点:当一串括号序列是一个合法序列的时候,要满足 左、右括号数量应当是相等的 这个条件,但这个条件显然不是充要条件)

具体做法:(状态转移

我们 每次枚举序列 b 中第 i 个字符的可能情况,以及其 是否在序列 alcs 序列(最长公共子序列)中,所以就会有 四种情况,分别讨论一下:

  • 第一种情况:序列 a 的第 j 个字符是,且 b 的第 i 个字符和 a 的第 j 个字符 组成 lcs 序列,那么有 dp[i][j][k] = (dp[i][j][k] + dp[i-1][j-1][k-1]) % mod,也就是说 b 序列的第 i 个字符也是,那么 b 的前 i - 1 个字符中 左括号右括号 数目 k - 1,而且 前一个状态最长匹配长度是 j - 1

  • 第二种情况:序列 a 的第 j 个字符是 ,且 b 的第 i 个字符和 a 的第 j 个字符 组成 lcs 序列,那么有 dp[i][j][k] = (dp[i][j][k] + dp[i-1][j-1][k+1]) % mod,也就是说 b 序列的第 i 个字符也是 ,那么 b 的前 i - 1 个字符中 左括号右括号 数目 k + 1,而且 前一个状态最长匹配长度是 j - 1

  • 第三种情况当前位置放,但是 不与 a 序列第 j 个位置的括号进行匹配,那么就有 dp[i][j][k] = (dp[i][j][k] + dp[i-1][j][k-1]) % mod,因为 当前位置是,所以 b 的前 i - 1 个字符中 左括号右括号 数目 k - 1a 序列匹配数目不变

  • 第四种情况当前位置放 ,但是 不与 a 序列第 j 个位置的括号进行匹配,那么就有 dp[i][j][k] = (dp[i][j][k] + dp[i-1][j][k+1]) % mod,因为 当前位置是 ,所以 b 的前 i - 1 个字符中 左括号右括号 数目 k + 1 个,a 序列匹配数目不变

需要注意的一点就是边界问题,在动态转移过程中不能出现用负数对数组进行索引的情况。

代码:

#include <bits/stdc++.h>

using namespace std;
//#define map unordered_map
//#define int long long
int n;
const int N = 210, mod = 1e9 + 7;
char a[N];
int dp[N][N][N];

signed main()
{
	int T; cin >> T;
	while (T--)
	{
		int n, m; scanf("%d%d", &n, &m);
		scanf("%s", a + 1);
		memset(dp, 0, sizeof dp);
		dp[0][0][0] = 1;
		for (int i = 1; i <= m; ++i)
		{
			for (int j = 0; j <= min(n, i); ++j)
			{
				for (int k = 0; k <= m; ++k)
				{
					//4种情况
					if (j >= 1 && k >= 1 && a[j] == '(') {// ( 
						dp[i][j][k] = (dp[i][j][k] + dp[i - 1][j - 1][k - 1]) % mod;
					}
						
					if (j >= 1 && a[j] == ')') {// )
						dp[i][j][k] = (dp[i][j][k] + dp[i - 1][j - 1][k + 1]) % mod;
					}
						
					if (k >= 1 && (j == 0 || a[j] == ')')) {// (
						dp[i][j][k] = (dp[i][j][k] + dp[i - 1][j][k - 1]) % mod;
					}
						
					if (j == 0 || a[j] == '(') {// )
						dp[i][j][k] = (dp[i][j][k] + dp[i - 1][j][k + 1]) % mod;
					}	
				}
			}
		}
			
		printf("%lld\n", dp[m][n][0]);
	}
	return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值