电路分析基础(待续)

单位尺度

电荷

电流

电压

集总/分布参数网络

基尔霍夫电流定律(KCL)

基尔霍夫电压定律(KVL)

电容

电流与电荷、电压的关系式

  • 在直流电路中,如果电压不变则无电流流过,电压变化越快电流越大.
  • 当是直流电时电压是没有变化的dv/dt=0=>i=0

电容电子与电容电压关系式q(t) = C\nu (t)

对其求导:d(q(t) )= d(C\nu (t))

化简:d(q(t) )= Cd(\nu (t))

简化:d(q )= Cd(\nu)

例题:已知电压求电流

例题:已知电流求电压

例7.2答案

能量储存

理想电容重要特性

电感

电压电流关系式

关系式解读

        这个公式表明,电压V与电感L和电流i对时间t的导数(即电流的变化率)成正比。简而言之,电感上的电压与通过它的电流的变化速度有关,电流变化得越快,电感上产生的电压就越高。

(直流电时电流是保持不变的所以电压为0,相当于一条导线)

推导

例题:已知电流求电压

例题:已知电压求电流

能量存储

理想电感重要特性

电感与电容关系是对偶的

 电感的串并联

 电容的串并联

       

带电感/电容的运放

电容

积分器

微分器

电感

无源RL电路

直接方法(定积分法)

公式推导:

实际计算:

(不定积分法)

RL电路断开电源后求电阻电压

例1

没有断开开关前回路:

因为40Ω电阻较大所以左边的网孔没有电流流过

又因为直流时候电感相当于一条导线所以:i(0)_{L} = 24/10 =2.4A

断开开关时的回路时,由电感所存储的能量继续提供电流:

i(t)_{L} = 2.4e^{-10t}

串联电流处处相等:

v=R\times i(t)_{L} = 40*2.4e^{-10t}=96e^{-10t}

例2

i(0)_{L} = 10/4 =2.5A

i(t)_{L} = 2.5e^{-2t}

v=R\times i(t)_{L} = ()4+6)*2.5e^{-10t}=25e^{-2t}

指数响应特征:

指数e^-x图像

无源RC电路

公式推导:

例题计算:

两端无电流流过所以为9V

V(t)=V_{0}e^{-\frac{t}{RC}}=9e^{-\frac{200}{6\times 10}}

两端无电流流过所以为50V

V(t)=V_{0}e^{-\frac{t}{RC}}=50e^{-\frac{160}{2\times 80}}=50/2.7=18.5V

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值