Agent2Agent(A2A)协议是谷歌于2025年4月10日推出的开源开放协议,旨在为不同AI智能体(Agents)提供标准化通信框架,实现跨平台、跨供应商的协作与信息交互。
一、核心设计原则
A2A遵循五大关键原则:
- 智能体原生能力:支持非结构化协作,即使智能体不共享内存、工具或上下文,也能实现真正多场景协作(如企业流程自动化)。
- 基于现有标准:采用HTTP、SSE(Server-Sent Events)、JSON-RPC等成熟协议,降低企业集成成本。
- 默认安全机制:内置企业级身份认证(如OAuth2.0/API Key)和授权,安全性对标OpenAPI标准。
- 长时任务支持:可处理秒级到数天级的任务,支持实时状态同步(如科研模拟任务进度跟踪)。
- 多模态兼容:支持文本、图像、音频、视频等交互形式,适应复杂场景需求(如医疗影像协同分析)。
二、关键技术机制
- 能力发现
通过JSON格式的“Agent Card”描述智能体功能(如技能、输入输出格式),客户端可快速定位适配的远程智能体。例如,招聘场景中的人才筛选Agent可声明“简历解析准确率98%”。 - 任务生命周期管理
定义标准化“任务”对象,包含唯一ID、状态(提交/执行/完成等)、优先级等字段。例如财务审核任务可自动传递票据影像和风险评分,实现跨系统自动化处理。 - 协作与用户体验协商
支持多模态消息交互(如生成的图像/视频片段),并通过“Parts”机制协商用户界面格式(如是否支持Web表单或iframe嵌入)。
三、与MCP协议的关系
A2A与Anthropic提出的**模型上下文协议(MCP)**形成互补:
- A2A:横向扩展,专注Agent间通信(如跨企业数据交互)
- MCP:纵向扩展,连接Agent与工具/API(如数据库访问)
两者协同可构建完整智能体生态,例如汽车维修场景中,MCP连接千斤顶工具,A2A协调维修工与零件供应商的协作。
四、典型应用场景
- 企业流程自动化
跨平台智能体协作处理订单管理、供应链调度等,某金融机构反洗钱核查周期从48小时缩短至6小时。 - 复杂任务协作
科研场景中,分子设计Agent与临床试验分析Agent协同推进新药研发。 - 多模态交互系统
医疗影像分析Agent与诊断报告生成Agent交互,支持DICOM格式与HL7标准数据传递。
五、生态与影响
已有50+企业加入生态,包括Salesforce、SAP等技术平台,以及埃森哲、德勤等服务机构。例如Atlassian将A2A集成至Jira,开发效率提升30%。该协议被视为继Android后谷歌的又一生态级布局,可能重塑AI协作标准。