高等数学期末总复习 DAY4. 利用莱布尼茨定理求高阶导 隐函数求导 对数求导法 参数函数求导 用导数求切线、法线 函数的微分

DAY 4.

这世上总要有个明白人,懂得克制。

1. 利用莱布尼茨定理求高阶导

只看两点:
1、常用导数的高阶公式
2、例题

在这里插入图片描述
例题:

在这里插入图片描述

2.隐函数求导

这种方程里面y是x的函数,但是不显性。

例题1
y = y ( x ) , y 2 − 2 x y + 9 = 0 y = y(x), y^2 - 2xy +9 = 0 y=y(x),y22xy+9=0 d y d x \frac{d_y}{d_x} dxdy

解:方程两边同时对x求导得

2 y y ′ − 2 y − 2 x y ′ = 0 2yy' - 2y - 2xy' = 0 2yy2y2xy=0

d y d x \frac{d_y}{d_x} dxdy = y y − x \frac{y}{y - x} yxy

3.对数求导

例题2

y = ( x 1 + x ) x y = (\frac {x}{1+x}) ^x y=(1+xx)x 求 y 的一阶导

解:方程两边同时取对数有

ln ⁡ y = x ln ⁡ ( x 1 + x ) \ln y = x \ln(\frac {x}{1+x}) lny=xln(1+xx)

方程两边同时对x求导得

y ′ y = ln ⁡ ( x 1 + x ) + x ( 1 x − 1 1 + x ) \frac{y'}{y} = \ln(\frac {x}{1+x}) + x(\frac{1}{x} - \frac{1}{1+x}) yy=ln(1+xx)+x(x11+x1)

y ′ = y ( ln ⁡ ( x 1 + x ) + 1 − x 1 + x ) y' = y(\ln(\frac {x}{1+x}) + 1 - \frac{x}{1+x}) y=y(ln(1+xx)+11+xx)

y ′ = ( x 1 + x ) x ( ln ⁡ ( x 1 + x ) + 1 1 + x ) y' = (\frac {x}{1+x}) ^x(\ln(\frac {x}{1+x}) +\frac{1}{1+x}) y=(1+xx)x(ln(1+xx)+1+x1)

4.参数函数求导

例题3

{ x = t 2 2 y = 1 − t \begin{cases} x = \frac{t^2}{2}& \text{}\\y = 1-t& \text{} \end{cases} {x=2t2y=1t d y d x \frac{d_y}{d_x} dxdy, d y 2 d x 2 \frac{d^2_y}{d_x{^2}} dx2dy2

解:

d y d x \frac{d_y}{d_x} dxdy = ( 1 − t ) ′ t 2 2 ′ \frac{(1-t)'}{\frac {t^2}{2}'} 2t2(1t) = − 1 t \frac { - 1}{t} t1

d y 2 d x 2 \frac{d^2_y}{d_x{^2}} dx2dy2 = − 1 t ′ t 2 2 ′ \frac{\frac{-1}{t}'}{\frac {t^2}{2}'} 2t2t1 = 1 t 3 \frac{1}{t^3} t31

5.用导数求切线、法线

这部分的内容和我们在高中学的差不多,基本就是求导数得斜率,再点差法写方程

例题4

y = cos ⁡ x y = \cos x y=cosx 在 点 ( π 3 , 1 2 ) (\frac{\pi}{3}, \frac{1}{2}) (3π,21) 处的切线与法线方程。

解:对y求导得:

y = − sin ⁡ x y = -\sin x y=sinx 代入点得切线的斜率k = − 3 2 - \frac{\sqrt 3}{2} 23

由点差法可得切线的方程为: y − 1 2 = − 3 2 ( x − π 3 ) y- \frac{1}{2} = - \frac{\sqrt 3}{2}(x -\frac{\pi}{3} ) y21=23 (x3π)

而函数的法线方程就只需要将斜率改写为 2 3 \frac{2}{\sqrt 3} 3 2

6.函数的微分

和前面函数的求导一样的只不过要在结尾加上 d x d_x dx

例题5

已知 y = x sin ⁡ 2 x y = x\sin 2x y=xsin2x ,则 d y = d_y = dy= ___ d x d_x dx

解: d y = ( sin ⁡ 2 x + x cos ⁡ 2 x ∗ 2 d_y = (\sin 2x + x \cos 2x * 2 dy=(sin2x+xcos2x2) d x d_x dx = ( sin ⁡ 2 x + 2 x cos ⁡ 2 x (\sin 2x + 2x \cos 2x (sin2x+2xcos2x) d x d_x dx

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据以下考纲筛选考试重点**第一章 函数、极限与连续** 1. 函数 (1)理解函数的概念,掌握函数的表示,会建立简单应用问题中的函数关系。 (2)了解函数的有界性、单调性、周期性和奇偶性。 (3)理解复合函数及分段函数的概念。 (4)掌握基本初等函数的性质及其图形,理解初等函数的概念。 2.数列与函数的极限 (1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质。 (2)掌握极限四则运算则,会应用两个重要极限。 3.函数的连续性 (1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 (2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。 **第二章 导数微分** 1.导数概念 理解导数的概念及可性与连续性之间的关系,了解导数的几何意义及物理意义。 2.函数求导则 掌握基本初等函数导数公式导数的四则运算则及复合函数求导则。 3.高阶导数 理解高阶导数的概念,会简单函数高阶导数。 4.函数微分 理解微分的概念,掌握导数微分之间的关系,会函数微分。 **第三章 导数的应用** 1.洛必达则 掌握用洛必达未定式极限的方。 2.函数的单调性、极值、最大值与最小值 (1)掌握函数单调性的判别方及其应用。 (2)掌握函数极值、最大值和最小值的,会解较简单的应用问题。 **第四章 不定积分** 1.不定积分的概念与性质 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式。 2.不定积分的方 掌握不定积分的换元积分和分部积分。 **第五章 定积分及其应用** 1.定积分的概念与性质 理解定积分的概念,了解定积分的几何意义、基本性质。 2.定积分的计算方 理解积分上限的函数并会它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分和分部积分。 3. 会利用定积分计算平面图形的面积。
最新发布
03-22

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值