高等数学期末总复习DAY13.多元函数微分的几个应用、方向导数和梯度、多元函数求极值、

DAY13.

what you want

1.多元函数的微分

多元函数求微分主要有两点

  1. 求曲面的切平面和法线

若曲面为 S : F ( x , y , z ) = 0 , 切 点 为 m 0 ( x 0 , y 0 , z 0 ) , 曲 面 法 向 量 为 n ⃗ = ( F x , F y , F z ) F(x,y,z) = 0 ,切点为m_0(x_0,y_0,z_0) ,曲面法向量为 \vec n = (F_x,F_y,F_z) F(x,y,z)=0m0(x0,y0,z0)n =(Fx,Fy,Fz)

则曲面的切平面为:
由面的点法式方程可得:
F x ( x − x 0 ) + F y ( y − y 0 ) + F z ( z − z 0 ) = 0 F_x(x - x_0)+F_y(y-y_0)+F_z(z-z_0) = 0 Fx(xx0)+Fy(yy0)+Fz(zz0)=0

法线方程为:

x − x 0 F x = y − y 0 F y = z − z 0 F z \frac{x-x_0}{F_x} = \frac{y-y_0}{F_y} = \frac{z-z_0}{F_z} Fxxx0=Fyyy0=Fzzz0

  1. 曲线的切线和法平面

若曲线为 l = { x = x ( t ) y = y ( t ) z = z ( t ) , 切 点 为 ( x 0 , y 0 , z 0 ) , 切 向 量 T ⃗ = ( x ( t ) , y ( t ) , z ( t ) ) l = \begin{cases} x= x(t) \\ y = y(t) \\ z= z(t) \end{cases} , 切点为 (x_0,y_0,z_0) , 切向量 \vec T = (x(t),y(t),z(t)) l=x=x(t)y=y(t)z=z(t),(x0,y0,z0),T =(x(t),y(t),z(t))

则 切线为 : x − x 0 x ′ ( t ) = y − y 0 y ′ ( t ) = z − z 0 z ′ ( t ) \frac{x-x_0}{x'(t)} = \frac{y-y_0}{y'(t)} = \frac{z-z_0}{z'(t)} x(t)xx0=y(t)yy0=z(t)zz0

法平面为: x ′ ( t ) ( x − x 0 ) + y ′ ( t ) ( y − y 0 ) + z ′ ( t ) ( z − z 0 ) = 0 x'(t)(x - x_0)+y'(t)(y-y_0)+z'(t)(z-z_0) = 0 x(t)(xx0)+y(t)(yy0)+z(t)(zz0)=0

例题

{ x = t 1 + t y = 1 + t t z = t 2 \begin{cases} x = \frac{t}{1+t} \\ y = \frac{1+t}{t} \\ z = t^2 \end{cases} x=1+tty=t1+tz=t2 求曲线在 t 0 = 1 t_0 = 1 t0=1 处的切线与法平面

解:当 t 0 = 1 t_0 = 1 t0=1时,切点为 ( 1 2 , 2 , 1 ) (\frac{1}{2}, 2,1) (21,2,1)

而切向量 t ⃗ = ( x ′ ( t ) , y ′ ( t ) , z ′ ( t ) ) ∣ t 0 = 1 = ( 1 4 , − 1 , 2 ) \vec t = (x'(t),y'(t),z'(t)) |_{t_0 = 1}=(\frac{1}{4},-1,2) t =(x(t),y(t),z(t))t0=1=(41,1,2)

所以可得切线为: x − 1 2 1 4 = y − 2 − 1 = z − 1 2 \frac{x - \frac{1}{2}}{\frac{1}{4}} = \frac{y-2}{ -1} = \frac{z-1}{2} 41x21=1y2=2z1

切平面略

2.方向导数和梯度

z = f ( x , y ) z = f(x,y) z=f(x,y) p 0 ( x 0 , y 0 ) p_0(x_0,y_0) p0(x0,y0)处沿着 l l l方向的变化率为方向导数

∂ z ∂ l ∣ p 0 = ( g r a d f ∗ e ⃗ ) = ( ∂ f ∂ x , ∂ f ∂ y ) ( cos ⁡ α , cos ⁡ β ) \frac{\partial z}{\partial l}|_{p_0} = (grad f * \vec e) = (\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}) (\cos \alpha , \cos \beta) lzp0=(gradfe )=(xf,yf)(cosα,cosβ)

其中 g r a d f grad f gradf为 f 在 l 方向上的梯度, e ⃗ \vec e e 为l方向的单位向量

例题

求函数 z = x 2 + y 2 z = x^2 + y^2 z=x2+y2在点(1,2)处,沿着从(1,2)到(2,2+ 3 \sqrt 3 3 )的方向导数

解:

这两点之间的方向向量为: l = ( 2 − 1 , 2 + 3 − 2 ) = ( 1 , 3 ) l = (2-1,2+ \sqrt 3 -2) = (1, \sqrt 3) l=(21,2+3 2)=(1,3 )

则方向向量的单位向量 e ⃗ = 1 1 + 3 2 , 3 2 ) = ( 1 2 , 3 2 ) \vec e = \frac{1}{\sqrt{1+\sqrt {3}^2}} , \frac{\sqrt 3}{2})=(\frac{1}{2},\frac{\sqrt 3}{2}) e =1+3 2 1,23 )=(21,23 )

g r a d z = ( ∂ z ∂ x , ∂ z ∂ y ) = ( 2 x , 2 y ) ∣ ( 1 , 2 ) grad z = (\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}) = (2x,2y)|_{(1,2)} gradz=(xz,yz)=(2x,2y)(1,2)

则可得方向导数 ∂ z ∂ l ∣ 1 , 2 = ( 1 2 , 3 2 ) ( 2 , 4 ) = 1 + 2 3 \frac{\partial z}{\partial l}|_{1,2} = (\frac{1}{2},\frac{\sqrt 3}{2}) (2,4) = 1+2\sqrt 3 lz1,2=(21,23 )(2,4)=1+23

3.多元函数求极值

一般有两种形式,无条件极值和条件极值

  1. 无条件极值

z = f ( x , y ) 在 D z = f(x,y) 在 D z=f(x,y)D内的极值

分三步走

1) 求驻点,就是 { f ′ x = 0 f ′ y = 0 \begin{cases} f'x = 0 \\ f'y = 0\end{cases} {fx=0fy=0 两偏导等于0的点

2)求二阶导

f x x , f x y , f y y ′ 分 别 记 为 A , B , C f_{xx} , f_{xy} , f'_{yy} 分别记为 A,B,C fxx,fxy,fyyA,B,C

3) { A C − B 2 > 0 有 极 值 且 { A < 0 为 极 大 值 A > 0 为 极 小 值 A C − B 2 = 0 无 法 判 断 A C − B 2 < 0 无 极 值 \begin{cases} AC - B^2 > 0 有极值且{\begin{cases} A<0 为极大值\\A>0 为极小值\end{cases}} \\ AC-B^2 = 0 无法判断 \\ AC - B^2 < 0 无极值\end{cases} ACB2>0{A<0A>0ACB2=0ACB2<0

  1. 条件极值

z = f ( x , y ) 在 φ ( x , y ) = 0 z = f(x,y)在 \varphi (x,y) = 0 z=f(x,y)φ(x,y)=0 的条件下的极值

则:令 F ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) F(x,y, \lambda) = f(x,y) + \lambda \varphi(x,y) F(x,y,λ)=f(x,y)+λφ(x,y)

{ F x = f x + λ φ x = 0 F y = f y + λ φ y = 0 F z = f z + λ φ z = 0 \begin{cases} F_x = f_x + \lambda \varphi x = 0 \\ F_y = f_y + \lambda \varphi y = 0 \\F_z = f_z + \lambda \varphi z =0\end{cases} Fx=fx+λφx=0Fy=fy+λφy=0Fz=fz+λφz=0

这一步求得驻点后,其下步骤和上面一样

例题太繁琐了,今天晚上还有别的事情,就不举例了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值