04概率论与数理统计笔记 随机变量的数字特征——基于《概率论与数理统计》许忠好

1 数学期望

一维变量

离散随机变量X具有分布列
P ( X = x k ) = p k , k = 1 , 2 , 3 … … P(X = x_k) = p_k,k = 1,2,3…… P(X=xk)=pk,k=1,2,3
若级数
∑ k = 1 ∞ x k p k 绝 对 收 敛 , 即 ∑ k = 1 ∞ ∣ x k ∣ p k < ∞ \sum^∞_{k=1}x_kp_k 绝对收敛,即\sum^∞_{k=1}|x_k|p_k <∞ k=1xkpkk=1xkpk<
该级数就是X的数学期望
记为EX

连续型随机变量X有概率密度函数p(x)
∫ − ∞ ∞ x p ( x ) d x 收 敛 \int^∞_{-∞}xp(x)dx收敛 xp(x)dx
于是上面的积分就是X的数学期望

注意:初等概率论数学期望EX都是有限制,不包括∞的情况,而有些分布数学期望不存在,比如柯西分布

定理
Y = f(X) 为随机变量X的函数,若数学期望E(f(X))
E Y = E ( f ( X ) ) = { ∑ k f ( x k ) p k 离 散 ∫ − ∞ ∞ f ( x ) p ( x ) d x 连 续 EY = E(f(X))=\left\{ \begin{aligned} \sum_{k}f(x_k)p_k& &离散 \\ \int^∞_{-∞} f(x)p(x)dx & & 连续\\ \end{aligned} \right. EY=E(f(X))=kf(xk)pkf(x)p(x)dx

性质
1)E( c ) = c
2)E(aX) = aEX
3)E(f(X)+g(X)) = E(f(X)) + E(g(X))

二维

定义
(X,Y)是二维随机变量,(EX,EY)是该变量的数学期望向量

定理
Z=g(X,Y)是二维随机变量的函数
E Z = E g ( X , Y ) { ∑ i , j g ( x i , y i ) p i j 离 散 ∬ g ( x , y ) p ( x , y ) d x d y 连 续 EZ = Eg(X,Y)\left\{ \begin{aligned} \sum_{i,j}g(x_i,y_i)p_{ij}& &离散 \\ \iint g(x,y)p(x,y)dxdy & & 连续\\ \end{aligned} \right. EZ=Eg(X,Y)i,jg(xi,yi)pijg(x,y)p(x,y)dxdy

定理
1) E ( f ( X ) + g ( Y ) ) = E f ( X ) + E g ( Y ) E(f(X) + g(Y)) = Ef(X)+Eg(Y) E(f(X)+g(Y))=Ef(X)+Eg(Y) 其中f和g为一元实值函数
2)X,Y相互独立,则 E ( f ( X ) g ( Y ) ) = E f ( X ) E g ( Y ) E(f(X)g(Y))=Ef(X)Eg(Y) E(f(X)g(Y))=Ef(X)Eg(Y)

于是我们有
E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X E Y E[(X-EX)(Y-EY)]=E(XY)-EXEY E[(XEX)(YEY)]=E(XY)EXEY
XY相互独立 E ( f ( X ) g ( Y ) ) = 0 E(f(X)g(Y))=0 E(f(X)g(Y))=0

2.方差

若数学期望 E ( X − E X ) 2 E(X-EX)^2 E(XEX)2存在 称其为随机变量X的方差,记为VarX
σ X = σ ( X ) = V a r X \sigma_X=\sigma(X) = \sqrt{VarX} σX=σ(X)=VarX 是X的标准差

性质
1)Var( c ) = 0
2) Var(aX+b) = a 2 a^2 a2Var(X)
3) VarX = E X 2 − ( E X ) 2 EX^2 - (EX)^2 EX2(EX)2
4) VarX ⩾ \geqslant 0
5) Var(X±Y) = VarX + VarY ± 2 E [ ( X − E X ) ( Y − E Y ) ] 2E[(X-EX)(Y-EY)] 2E[(XEX)(YEY)]
6) XY相互独立, Var(X±Y)=VarX+VarY

马尔科夫不等式
随机变量X方差存在,对任意 ϵ \epsilon ϵ>0
P ( X ≥ ϵ ) ≤ E X ϵ P(X≥\epsilon)≤\frac{EX}{\epsilon} P(Xϵ)ϵEX

切比雪夫不等式
P { ∣ X − E X ∣ ≥ ϵ } ≤ V a r X ϵ 2 P\{|X-EX|≥\epsilon\}≤\frac{VarX}{\epsilon^2} P{XEXϵ}ϵ2VarX P { ∣ X − E X ∣ < ϵ } ≥ 1 − V a r X ϵ 2 P\{|X-EX|<\epsilon\}≥1-\frac{VarX}{\epsilon^2} P{XEX<ϵ}1ϵ2VarX

3.协方差与相关系数

定义
设(X,Y)是二维随机变量,若 E [ ( X − E X ) ( Y − E Y ) ] E[(X-EX)(Y-EY)] E[(XEX)(YEY)]存在 称之为X和Y的协方差,记为Cov(X,Y)

性质
1) C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y) = Cov(Y,X) Cov(X,Y)=Cov(Y,X)     C o v ( X , X ) = V a r X \ \ \ Cov(X,X) = VarX    Cov(X,X)=VarX
2) C o v ( X , a ) = 0     C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(X,a)=0\ \ \ Cov(aX,bY)=abCov(X,Y) Cov(X,a)=0   Cov(aX,bY)=abCov(X,Y)
3) C o v ( X , Y ) = E ( X Y ) − E X E Y Cov(X,Y)=E(XY)-EXEY Cov(X,Y)=E(XY)EXEY
4)X和Y相互独立,有Cov(X,Y) = 0 (反之不一定成立
5)Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z)
6) Var(X±Y) = VarX+VarY +=2Cov(X,Y)

定义
C o r r ( X , Y ) = C o v ( X , Y ) V a r X V a r Y Corr(X,Y)=\frac{Cov(X,Y)}{\sqrt{VarX}\sqrt{VarY}} Corr(X,Y)=VarX VarY Cov(X,Y)
是X和Y的相关系数,可记 ρ X Y \rho_{XY} ρXY
取值在-1到1之间
X ∗ = X − E X V a r X Y ∗ = Y − E Y V a r Y   E X ∗ = E Y ∗ = 0 V a r X ∗ = V a r Y ∗ = 1 X^{*} = \frac{X-EX}{\sqrt{VarX}}\quad Y^{*} = \frac{Y-EY}{\sqrt{VarY}}\\ \\\ \\ EX^*=EY^* = 0\\ VarX^* = VarY^* = 1 X=VarX XEXY=VarY YEY EX=EY=0VarX=VarY=1

定理
|Corr(X,Y)|≤1
==1的时候当且仅当X与Y有线性关系
即存在a,b使得P(Y=aX+b) ==1

推论
Cauchy-Schwarz不等式
∣ C o r r ( X , Y ) ∣ ≤ 1 |Corr(X,Y)|≤1 Corr(X,Y)1
得到 ∣ E ( ( X − E X ) ( Y − E Y ) ) ∣ 2 ≤ V a r X ⋅ V a r Y |E((X-EX)(Y-EY))|^2≤VarX\cdot VarY E((XEX)(YEY))2VarXVarY
一般期望存在,有
∣ E ( X Y ) ∣ 2 ≤ E X 2 E Y 2 |E(XY)|^2≤EX^2EY^2 E(XY)2EX2EY2

对于(X,Y)~N【注意要联合分布】
Corr(X,Y) = ρ \rho ρ 对于二维正态分布,不相关 和 独立等价

4 矩和其他数字特征


E ( X − E X ) k E(X-EX)^k E(XEX)k是X的k阶中心矩,记为 ν k \nu_k νk
E X k EX^k EXk是X的原点矩 记为 μ k \mu_k μk

偏度系数
X的三阶矩 μ 3 \mu_3 μ3存在,称 β S = ν 3 σ 3 \beta_S = \frac{\nu_3}{\sigma^3} βS=σ3ν3是X的偏度系数
σ = ν 2 \sigma = \sqrt{\nu_2} σ=ν2 是X的标准差

峰度系数
随机变量X的四阶矩 μ 4 \mu_4 μ4存在
β k = ν 4 ν 2 2 − 3 \beta_k=\frac{\nu_4}{\nu_2^2}-3 βk=ν22ν43是X的峰度系数

变异系数
随机变量二阶矩 μ 2 \mu_2 μ2存在且数学期望 μ 1 = E X ≠ 0 \mu_1=EX≠0 μ1=EX=0,称
C v = ν 2 μ 1 = 1 α C_v=\frac{\sqrt{\nu_2}}{\mu_1}=\frac{1}{\sqrt{\alpha}} Cv=μ1ν2 =α 1

分位数
F是X的分布函数,α∈(0,1)
x α = i n f { x : F ( x ) ≥ α } x_{\alpha}=inf\{x:F(x)≥\alpha \} xα=inf{x:F(x)α} (下分位数点)

中位数
F是X的分布函数, x 1 / 2 x_{1/2} x1/2是X或F的中位数
P<中位数的部分 = P > 中位数的部分

5 极限定理

中心极限定理

随机变量X服从二项分布 b(n,p)
当n充分大
可以用 N(np,np(1-p)) 来近似求解

若n趋于无穷, S n = ∑ k = 1 n X k S_n = \sum^n_{k=1}X_k Sn=k=1nXk渐进服从正态分布,即
S n − E S n V a r S n \frac{S_n-ES_n}{\sqrt{VarS_n}} VarSn SnESn的分布函数 F n ( x ) 收 敛 于 Φ ( x ) F_n(x)收敛于\Phi(x) Fn(x)Φ(x)
我们称 { X n , n ≥ 1 } \{X_n,n≥1\} {Xn,n1}服从中心极限定理

林德贝格——勒维中心定理
独立同分布的随机变量序列,数学期望为 μ \mu μ方差是 σ 2 \sigma^2 σ2

lim ⁡ n → ∞ P { S n − n μ σ n ≤ y } = Φ ( x ) \lim_{n\rightarrow∞}P\{\frac{S_n-n\mu}{\sigma\sqrt{n}}≤y\} = \Phi(x) nlimP{σn Snnμy}=Φ(x)

德莫弗——拉普拉斯中心定理
符合二项分布Y_n~b(n,p)
lim ⁡ n → ∞ P { Y n − n p n p ( 1 − p ) ≤ y } = Φ ( x ) \lim_{n\rightarrow∞}P\{\frac{Y_n-np}{\sqrt{np(1-p)}}≤y\} = \Phi(x) nlimP{np(1p) Ynnpy}=Φ(x)

大数定理

X和X_1,X_2……都在同一个概率空间中
对任意的 ϵ > 0 \epsilon > 0 ϵ>0
lim ⁡ n → ∞ P ( ∣ X n − X ∣ ≥ ϵ ) = 0 \lim_{n\rightarrow∞}P(|X_n-X|≥\epsilon)=0 limnP(XnXϵ)=0
称随机变量序列 { X n , n ≥ 1 } \{X_n,n≥1\} {Xn,n1}依概率收敛到X

记为 X n → P X X_n\rightarrow^PX XnPX
定义
S n − E S n n → P    0 \frac{S_n-ES_n}{n}\rightarrow^P\ \ 0 nSnESnP  0

Bernoulli大数定理
X1,X2……独立同分布,共同分布满足b(1,p)
S n n → P p \frac{S_n}{n}\rightarrow^P p nSnPp

切比雪夫大数定理
随机变量序列,两两互不相关(Cov(X_i,X_j) == 0) 且他们的方差一致有界,其满足大数定理

马尔可夫大数定理
1 n 2 V a r ( ∑ k = 1 n X k ) → 0 \frac{1}{n^2}Var(\sum^n_{k=1}X_k)\rightarrow0 n21Var(k=1nXk)0
其满足大数定理

Khinchin大数定理
X1,X2……独立同分布,EX1存在
则随机变量序列 { X n , n ⩾ 1 } \{X_n,n\geqslant 1\} {Xn,n1}服从大数定理

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值