01概率论与数理统计笔记 事件与概率——基于《概率论与数理统计》许忠好

1.1样本空间

随机现象: 一定条件下并不总是出现相同结果的现象
特点① 出现结果不止一个
特点② 并不知道哪个结果会出现

会表现出一定的规律性,称之为统计规律性

随机试验:对随机现象进行的试验和观察 记为 E
特征①随机性
特征②可重复进行

样本点: 随机试验的一个可能的结果 记为 ω
样本空间: 随机试验所有样本点组成的集合 Ω(来自于随机试验)
分为离散样本空间和连续样本空间

随机事件

随机事件 随机试验可能结果的集合,是Ω部分元素组成的集合,多用A,B,C表示,也可以用文字表述
本质是集合,是Ω的子集

特殊事件
①基本事件:只有一个样本点
②必然事件:包含所有样本点 Ω
③不可能事件:不含任何样本点的事件

事件A发生:随机事件出现结果ω包含在随机事件A中,也就是ω∈A

事件的关系
1)包含:A发生导致B发生,A包含于B
A ⊂ B A\subset B AB
2)相等:A包含于B且B包含于A,A=B
3)互不相容:A与B不能同时发生

事件运算
1)交: A, B至少有一个发生构成的事件
A ∪ B A∪B AB
2)并: A和B同时发生构成的事件
A ∩ B A∩B AB A B AB AB
3)差:A发生而B不发生的事件
A − B A-B AB
4)对立:事件Ω\A称为A的对立事件
A ‾ \overline{A} A
5)对称差:A\B和B\A的并
A △ B A\triangle B AB

补充①
A ∪ B = B ∪ A , A B = B A A∪B = B∪A, AB = BA AB=BAAB=BA
补充②
一般
A \ B ≠ B \ A A\backslash B \ne B\backslash A A\B=B\A
A △ B = B △ A A\triangle B = B\triangle A AB=BA
补充③
A B = ∅ ⇔ A 和 B 互 不 相 容 AB = \emptyset \Leftrightarrow A和B互不相容 AB=AB
补充④
A,B对立,则一定互不相容
补充⑤
A ‾ ‾ = A ; A ‾ = B ⇔ A B = ∅ 且 A ∪ B = Ω \overline{\overline{A}} = A;\overline{A} = B \Leftrightarrow AB = \emptyset且A∪B = Ω A=A;A=BAB=AB=Ω
补充⑥
A △ B = ( A \ B ) + ( B \ A ) A\triangle B = (A\backslash B) + (B\backslash A) AB=(A\B)+(B\A)
A ∪ B = ( A △ B ) + ( A B ) A∪B = (A\triangle B)+(AB) AB=AB+AB

对偶公式
A ∪ B ‾ = A ‾ ∩ B ‾ A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A∪B} = \overline{A}∩ \overline{B}\quad\quad \overline{A∩B} = \overline{A}∪\overline{B} AB=ABAB=AB

事件域
Ω是样本空间,𝓕是Ω部分自己组成的集合类
1 ) Ω ∈ F 2 ) A ∈ F 蕴 含 A ‾ ∈ F 3 ) 对 于 任 意 n ≥ 1 , A n ∈ F 蕴 含 ∪ n = 1 ∞ A n ∈ F 1)Ω∈\mathcal{F}\\ 2)A∈\mathcal{F}蕴含\overline{A}∈\mathcal{F}\\ 3)对于任意n≥1,A_n∈\mathcal{F}蕴含\cup^∞_{n=1}A_n∈\mathcal{F} 1ΩF2AFAF3n1AnFn=1AnF
𝓕是Ω上的事件域

概率和性质

公理
①非负性:P(A)≥0
②正则性:P(Ω)=1
③可加可列: A 1 … … A n 互 不 相 容 P ( ∑ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) A_1……A_n互不相容 \\ P(∑^∞_{n=1}A_n)= ∑^∞_{n=1}P(A_n) A1AnP(n=1An)=n=1P(An)
P为概率测度或概率

称三元总体(Ω,𝓕,P)是概率空间 Ω是样本空间,𝓕是事件域,P是定义在𝓕上的概率测度

性质
P ( ∅ ) = 0 P(\emptyset) = 0 P()=0
②对立事件公式
P ( A ‾ ) = 1 − P ( A ) P(\overline{A}) = 1 - P(A) P(A)=1P(A)
③有限可加性
A B = ∅ 有 P ( A + B ) = P ( A ) + P ( B ) AB=\emptyset 有P(A+B)=P(A)+P(B) AB=P(A+B)=P(A)+P(B)
④可减性 A ⊃ B 有 P ( A − B ) = P ( A ) − P ( B ) A\supset B 有P(A-B) = P(A)-P(B) ABP(AB)=P(A)P(B)
⑤单调性
A ⊃ B 有 P ( A ) ≥ P ( B ) A\supset B有P(A)≥P(B) ABP(A)P(B)
⑥有界性 0 ≤ P ( A ) ≤ 1 0≤P(A)≤1 0P(A)1
⑦加法公式
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B) = P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB)
⑧次可加性
P ( A ∪ B ) ≤ P ( A ) + P ( B ) P(A\cup B)≤P(A)+P(B) P(AB)P(A)+P(B)

1.2概率计算

古典方法

①样本空间Ω是有限集合
②基本事件的发生是等可能
我们常用|A|代表A所含的样本点个数,定义事件发生的概率为
P ( A ) = ∣ A ∣ ∣ Ω ∣ P(A) = \frac{|A|}{|Ω|} P(A)=ΩA

频率方法

①随机试验可大量重复进行
②n(A)表示n次重复实验事件A发生的次数,f_nA为事件发生频率
f n A = n ( A ) n f_nA=\frac{n(A)}{n} fnA=nn(A)
③f_nA稳定于某一个常数
④频率的稳定值作为A发生的概率

几何方法

①样本空间Ω是n纬空间中的有界区域,L(Ω)>0,我们以L(A)表示A的度量
②每个样本点落在某个子区域的概率和该区域度量大小成正比
P ( A ) = L ( A ) L ( Ω ) P(A) = \frac{L(A)}{L(Ω)} P(A)=L(Ω)L(A)

1.3常见概率模型

不返回抽样

N产品,M个不合格,N-M个合格,不返回的任取n个,n中有m个不合格的概率为
C M m ⋅ C N − M n − m C N n \frac{C^m_M\cdot C^{n-m}_{N-M}}{C^n_N} CNnCMmCNMnm
又叫超几何模型

返回抽样

N个产品,M个不合格,N-M个合格,有返回的抽取n个,n个中有m个不合格的概率为
C n m M m ( N − M ) n − m N n = C n m ( M N ) m ( N − M N ) n − m C^m_n\frac{M^m(N-M)^{n-m}}{N^n} = C^m_n(\frac{M}{N})^m(\frac{N-M}{N})^{n-m} CnmNnMm(NM)nm=Cnm(NM)m(NNM)nm

盒子模型

n个不同球放入N个不同盒子中,每个盒子放球数量不限,恰有n个盒子各有一球的概率为
P N n N n = N ! N n ( N − n ) ! \frac{P_N^n}{N^n}=\frac{N!}{N^n(N-n)!} NnPNn=Nn(Nn)!N!

配对模型

n个人,n个帽子,一人任取一顶,至少一个人拿对自己帽子概率
也就是有人能拿到自己的帽子即可,所以得应用加法公式A +B+C- AB - BC - AC + ABC……
P ( ⋃ k = 1 n A k ) = ∑ k = 1 n ( − 1 ) k − 1 1 k ! P(\bigcup ^n _{k=1}A_k) = \sum ^n _ {k=1}(-1)^{k-1}\frac{1}{k!} P(k=1nAk)=k=1n(1)k1k!1

1.4条件概率

P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)
B出现的条件下,A发生的条件概率
P(B) = 0时候,P(A|B)没有意义
P(A)是A的无条件概率,B = Ω,可以将无条件概率视为条件概率P(A) = P(A | Ω)

B∈𝓕,P(B)>0,定义集函数
P B ( A ) = P ( A ∣ B ) P_B(A) = P(A|B) PB(A)=P(AB)

P_B性质
1)非负性
2)正则
3)可列可加

性质


P ( A ‾ ∣ B ) = 1 − P ( A ∣ B ) P(\overline{A}|B) = 1-P(A|B) P(AB)=1P(AB)

P ( A ∪ C ∣ B ) = P ( A ∣ B ) + P ( C ∣ B ) − P ( A C ∣ B ) P(A\cup C|B) = P(A|B) + P(C|B) - P(AC|B) P(ACB)=P(AB)+P(CB)P(ACB)

P ( A \ C ∣ B ) = P ( A ∣ B ) − P ( A C ∣ B ) P(A\backslash C|B)=P(A|B)-P(AC|B) P(A\CB)=P(AB)P(ACB)

特殊性质

P ( B ∣ B ) = 1 P(B|B)=1 P(BB)=1
若 P ( B ) = 1 , P ( A ∣ B ) = P ( A ) 若P(B)=1,P(A|B)=P(A) P(B)=1,P(AB)=P(A)
若 A B = ∅ , P ( A ∣ B ) = 0 若AB=\emptyset ,P(A|B)=0 AB=,P(AB)=0
若 A ⊂ B , P ( A ∣ B ) = P ( A ) P ( B ) 若A\subset B,P(A|B) =\frac{P(A)}{P(B)} ABP(AB)=P(B)P(A)

乘法公式

P ( A B ) = P ( A ) P ( B ∣ A ) = P ( B ) ( A ∣ B ) P(AB) = P(A)P(B|A) = P(B)(A|B) P(AB)=P(A)P(BA)=P(B)(AB)
P ( A 1 … … A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) … … P ( A n ∣ A 1 … … A n − 1 ) P(A_1……A_n) = P(A_1)P(A_2|A_1)……P(A_n|A_1……A_{n-1}) P(A1An)=P(A1)P(A2A1)P(AnA1An1)
乘法公式的条件概率版本
P ( A 1 … … A n ∣ B ) = P ( A 1 ∣ B ) P ( A 2 ∣ A 1 B ) … … P ( A n ∣ A 1 … … A n − 1 B ) P(A_1……A_n|B) = P(A_1|B)P(A_2|A_1B)……P(A_n|A_1……A_{n-1}B) P(A1AnB)=P(A1B)P(A2A1B)P(AnA1An1B)

全概率公式

P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A)=P(A|B)P(B) + P(A|\overline{B})P(\overline{B}) P(A)=P(AB)P(B)+P(AB)P(B)
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + … … + P ( A ∣ B n + 1 ) P ( B n + 1 ) P(A) = P(A|B_1)P(B_1)+……+P(A|B_{n+1})P(B_{n+1}) P(A)=P(AB1)P(B1)++P(ABn+1)P(Bn+1)

Bayes公式

P ( B j ∣ A ) = P ( B j ) P ( A ∣ B j ) ∑ k = 1 n P ( B k ) P ( A ∣ B k ) ( j = 1 … … n ) P(B_j|A) = \frac{ P(B_j)P(A|B_j) } { \sum^n_{k = 1} P(B_k)P(A|B_k)}\quad(j = 1……n) P(BjA)=k=1nP(Bk)P(ABk)P(Bj)P(ABj)(j=1n)

1.5独立性

两个事件相互独立
P ( A B ) = P ( A ) ⋅ P ( B ) P(AB) = P(A)\cdot P(B) P(AB)=P(A)P(B)

多个事件独立
两两独立
P ( A i A j ) = P ( A i ) P ( A j ) P(A_iA_j) = P(A_i)P(A_j) P(AiAj)=P(Ai)P(Aj)
三三独立
P ( A i A j A k ) = P ( A i ) P ( A j ) P ( A k ) P(A_iA_jA_k)=P(A_i)P(A_j)P(A_k) P(AiAjAk)=P(Ai)P(Aj)P(Ak)

若事件A1……An相互独立
P ( ⋃ k = 1 n A k ) = 1 − ∏ k = 1 n ( 1 − P ( A k ) ) P(\bigcup ^n_{k=1}A_k) = 1-\prod ^n_{k=1}(1- P(A_k)) P(k=1nAk)=1k=1n(1P(Ak))

补充

排列组合

袋子模型 (占位模型
n球任取r个球(r个球放到盒子中
1)取球有放回,讲次序 (球有区别,装的球不限
∣ Ω ∣ = n r |Ω|=n^r Ω=nr
2)不放回,讲次序 (球有区别,最多一个球
∣ Ω ∣ = P n r |Ω| = P^r_n Ω=Pnr
3)不放回,不讲次序 (球没区别,最多一个球
∣ Ω ∣ = C n r |\Omega| = C^r_n Ω=Cnr
4)有返回,不讲次序 (球没区别,装球不限
【用隔板模型理解,r个球分割成n个区间,也就是n+1个隔板中有n-1个隔板(两个放在边缘)给你任意插在r+ (n - 1)插入点(每次插入一个隔板会加一个新的插入点),球数量代表取得次数
【反过来,把r看成球,分配r个球到r+n-1个空隙也是同理
∣ Ω ∣ = C n + r − 1 r |\Omega| = C^r_{n+r-1} Ω=Cn+r1r

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值