AI作业ch8

本文详细介绍了如何使用信息增益构建一个关于配眼镜的决策树,首先选择了散光(astigmatism)作为最优划分特征,然后在Yes和No条件下分别考虑其他特征。同时,推导了logit函数和logistic函数的等价关系,展示了解析转换的过程,证明了两者在特定条件下的等价性。
摘要由CSDN通过智能技术生成

1

•	[决策树] 基于信息增益,对下述数据集进行决策树构建,描述过程
一个关于配眼镜的一个决策分类所需要的数据,数据集包含4属性:
    age
    astigmatism
    trear-prod-rate为输入特征,
    contact-lenses为决策属性。

在这里插入图片描述

第一特征

我们可以考虑以下公式
G ( D , a ) = H ( D ) − ∑ v = 1 V ∣ D v ∣ D H ( D v ) G(D,a)=H(D)-\sum^V_{v=1}\frac{|D^v|}{D}H(D^v) G(D,a)=H(D)v=1VDDvH(Dv)

H ( D ) H(D) H(D)在数据确定的时候已经定下来了,所以我们只需要考虑后半部分 ∑ v = 1 V ∣ D v ∣ D \sum^V_{v=1}\frac{|D^v|}{D} v=1VDDv

先考虑三个特征值

  1. 针对年龄
特征值softhardnonesum
young1113
pre-prebyopic1135
prebyopic0134

通过公式不难得到
a g e = − [ 3 12 ( 1 3 l o g 2 1 3 + 1 3 l o g 2 1 3 + 1 3 l o g 2 1 3 ) + 5 12 ( 1 5 l o g 2 1 5 + 1 5 l o g 2 1 5 + 3 5 l o g 2 3 5 ) + 4 12 ( 1 4 l o g 2 1 4 + 3 4 l o g 2 3 4 ) ] = 1.238 \begin{aligned}age = &-[\frac{3}{12}(\frac{1}{3}log_2\frac{1}{3}+\frac{1}{3}log_2\frac{1}{3}+\frac{1}{3}log_2\frac{1}{3})\\ &+\frac{5}{12}(\frac{1}{5}log_2\frac{1}{5}+\frac{1}{5}log_2\frac{1}{5}+\frac{3}{5}log_2\frac{3}{5})\\&+\frac{4}{12}(\frac{1}{4}log_2\frac{1}{4}+\frac{3}{4}log_2\frac{3}{4})] = 1.238\end{aligned} age=[123(31log231+31log231+31log231)+125(51log251+51log251+53log253)+124(41log241+43log243)]=1.238

  1. 针对散光
特征值softhardnonesum
yes0347
no1135

代入公式

a s t i g m a t i s m = 0.979 astigmatism = 0.979 astigmatism=0.979

  1. 泪液生成率
特征值softhardnonesum
reduced0044
normal2338

代入公式

t e a r _ p r o d u c t i o n _ r a t e = 1.041 tear\_production\_rate = 1.041 tear_production_rate=1.041

所以我们首先取astigmatism可以让函数最大

第二特征

然后再考虑剩下的特征

首先基于Yes情况下的输入特征

特征值softhardnonesum
young0112
pre-prebyopic0123
prebyopic0112
reduced0022
normal0325

a g e = − [ 2 7 ( 1 2 l o g 2 1 2 + 1 2 l o g 2 1 2 ) + 3 7 ( 1 3 l o g 2 1 3 + 1 3 l o g 2 1 3 + 1 3 l o g 2 1 3 ) + 2 7 ( 1 2 l o g 2 1 2 + 1 2 l o g 2 1 2 ) ] = 0.965 \begin{aligned}age= &-[\frac{2}{7}(\frac{1}{2}log_2\frac{1}{2}+\frac{1}{2}log_2\frac{1}{2}) \\ & +\frac{3}{7}(\frac{1}{3}log_2\frac{1}{3}+\frac{1}{3}log_2\frac{1}{3}+\frac{1}{3}log_2\frac{1}{3})\\ &+\frac{2}{7}(\frac{1}{2}log_2\frac{1}{2}+\frac{1}{2}log_2\frac{1}{2})] = 0.965\end{aligned} age=[72(21log221+21log221)+73(31log231+31log231+31log231)+72(21log221+21log221)]=0.965
t e a r _ p r o d u c t i o n _ r a t e = 0.694 tear\_production\_rate = 0.694 tear_production_rate=0.694
**取yes的时候选tear
**
基于No的情况

特征值softhardnonesum
young1001
pre-prebyopic1012
prebyopic0022
reduced0022
normal2013

a g e = 0.4 age = 0.4 age=0.4
t e a r = 0.551 tear=0.551 tear=0.551

取no的时候应选择age

可以得到如下的决策树
在这里插入图片描述

2.

[线性分类] 推导下述logit function和logistic function等价:
p ( X ) = e β 0 + β 1 X 1 + e β 0 + β 1 X p ( X ) 1 − p ( X ) = e β 0 + β 1 X p(X)=\frac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X}}\quad \frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X} p(X)=1+eβ0+β1Xeβ0+β1X1p(X)p(X)=eβ0+β1X
换元,令 f ( X ) = p ( X ) 1 − p ( X ) , f ( X ) 1 − f ( X ) = p ( X ) f(X)=\frac{p(X)}{1-p(X)}, \frac{f(X)}{1-f(X)}=p(X) f(X)=1p(X)p(X),1f(X)f(X)=p(X)

p ( X ) 1 − p ( X ) = f ( X ) = e β 0 + β 1 X 1 + e β 0 + β 1 X 1 − e β 0 + β 1 X 1 + e β 0 + β 1 X = e β 0 + β 1 X 1 + e β 0 + β 1 X − ( e β 0 + β 1 X ) = e β 0 + β 1 X = f ( X ) 1 − f ( X ) = p ( X ) \left.\begin{aligned} \frac{p(X)}{1-p(X)}=f(X)& =\frac{\frac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X}}} {1- \frac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X}}}\\ \\ & =\frac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X} -(e^{\beta_0+\beta_1X}) }\\ &=e^{\beta_0+\beta_1X}\\ &=\frac{f(X)}{1-f(X)} = p(X) \end{aligned}\right. 1p(X)p(X)=f(X)=11+eβ0+β1Xeβ0+β1X1+eβ0+β1Xeβ0+β1X=1+eβ0+β1X(eβ0+β1X)eβ0+β1X=eβ0+β1X=1f(X)f(X)=p(X)

综上等价

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值