题目大意:
今盒里有n个小球,A、B两人轮流从盒中取球。
每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个。
两人都很聪明,不会做出错误的判断。
每个人从盒子中取出的球的数目必须是:1,3,7或者8个。
轮到某一方取球时不能弃权!
A先取球,然后双方交替取球,直到取完。
被迫拿到最后一个球的一方为负方(输方)
编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?
解法一(递归版):
我们只需要去考虑两个状态,、如果n-1的状态是A必输,那么n的状态就是A必赢。但是反过来并不成立,这个找反例很容易,比如n = 8和n = 9,A都是必赢的。
代码:
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
int function(int n)
{
if (n == 0)
return 1;
if (n >= 1 && function(n - 1) == 0)
return 1;
if (n >= 3 && function(n - 3) == 0)
return 1;
if (n >= 7 && function(n - 7) == 0)
return 1;
if (n >= 8 && function(n - 8) == 0)
return 1;
return 0;
}
int main()
{
for (int i = 1; i <= 50; i++){
printf("%d : %s\n", i, function(i)?"true": "false");
}
return 0;
}
解法二(递推版本):
思路大概就是:如果n的时候,A必输,那个n+1,n+3,n+7,n+8,A必定会赢。直接循环就能够出来结果。但是,如果n状态已经能够赢了,那它的状态就不能在被替换。
代码:
#include<iostream>
#include<cstring>
using namespace std;
const int N = 100;
int dp[N];
int a[] = {1 , 3 ,7 ,8};
int main(){
memset(dp , 0 , sizeof(dp));
int n;
while(cin >> n){
dp[1] = 0;
for(int i = 1;i <= n;i++){
if(dp[i] == 0){
for(int j = 0;i + a[j] <= n && j < 4;j++){
dp[i + a[j]] = 1;
}
}
}
for(int i = 1;i <= n;i++){
if(dp[i] == 1)
cout <<i << ":true" << endl;
else
cout <<i << ":false" << endl;
}
}
return 0;
}