本文最后的图展示了气势磅礴的AI+CN(云原生)的技术栈,潜藏着无限的杀机。还在云原生的时候,研发和运维一直围绕着Devops进行两国杀。CN+AI的时代,数据科学家加入了战局,彻底变成三国杀。边界的不断互相渗透,全栈的人才最宝贵,抑或要找到新型的跨团队合作模式。
机器学习管道
Pipeline翻译为管道其实不大贴切,翻译为流程较为妥当。AI平台的架构设计离不开基本的ML流程。正因为人工智能的规模化扩展和低延迟性的需求给传统的架构设计带来了挑战。虽然基于云原生的架构灵活和高扩展,但是它又不得不面对新的挑战。
典型机器学习流程包括,数据准备(收集、清洁/预处理、特征工程)、模型训练(含模型管理,测试与超参数调整)、CI/CD(含模型仓库与存储)、模型服务、应用与系统监测(负载、模型漂移、安全性)。若是AI基于云原生,那么在各个环节的挑战又什么,又应该在设计的时候考虑到哪些维度?