用Python实现梯度下降算法

本文通过一个具体的Python代码示例介绍了梯度下降算法的基本原理及其在机器学习中的应用。该算法用于优化损失函数,帮助寻找最佳参数以提高预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码如下:


import numpy as np
from numpy.linalg import inv
from numpy import dot
from numpy import mat

X=mat([1,2,3]).reshape(3,1)
Y=2*X
#theta=theta-alpha*(theta*X-Y)*X
theta=1
alpha=0.1
for i in range(100):
    theta=theta+np.sum(alpha*(Y-dot(X,theta))*X.reshape(1,3))/3.
print(theta)
梯度下降算法的作用:在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数L,接下来便是通过优化算法对损失函数L进行优化,以便寻找到最优的参数W。在求解机器学习参数W的优化算法时,使用较多的是基于梯度下降的优化算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值