代码如下:
#encoding:utf-8 from sklearn import tree #1表示光滑,0表示粗糙 features=[[140,1],[130,1],[150,0],[170,0]] #0表示苹果,1表示橘子 labels=[0,0,1,1] #创建一个分类器(使用决策树作为分类器),它现在只是一个没有规则的盒子,所以需要训练它 clf=tree.DecisionTreeClassifier() clf=clf.fit(features,labels)#这行代码就将分类器训练好了 print(clf.predict([[150,0]]))#预测[150,0]是橘子还是苹果