使用决策树对数据进行分类——识别橘子苹果

代码如下:


#encoding:utf-8
from sklearn import tree
#1表示光滑,0表示粗糙
features=[[140,1],[130,1],[150,0],[170,0]]
#0表示苹果,1表示橘子
labels=[0,0,1,1]
#创建一个分类器(使用决策树作为分类器),它现在只是一个没有规则的盒子,所以需要训练它
clf=tree.DecisionTreeClassifier()
clf=clf.fit(features,labels)#这行代码就将分类器训练好了
print(clf.predict([[150,0]]))#预测[150,0]是橘子还是苹果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值