- 博客(28)
- 收藏
- 关注
转载 Python3抓取猫眼电影排行
程序运行结果如下图示:代码如下:import requestsimport reimport jsonfrom requests.exceptions import RequestExceptionimport timedef get_one_page(url): headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh...
2018-06-25 16:49:36 402
转载 Python实现简单工厂模式
如图所示。代码如下:#工厂模式特点:工厂根据条件产生不同功能的类class Operation(object): def get_result(self): passclass Add(Operation):#继承自类Operation def get_result(self): return self.op1+self.op2class ...
2018-06-16 00:00:27 371
原创 使用Tensorboard——TensorFlow可视化2
效果如下列图所示。代码如下:import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#构造添加一个神经层的函数def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): layer_name='layer%s...
2018-06-02 17:32:27 396
原创 使用Tensorboard——TensorFlow可视化1
效果如下图所示。运行程序,在终端的当前项目路径下输入“tensorboard --logdir logs”,生成访问地址,将地址在谷歌浏览器中打开即可。(Tensorboard对谷歌浏览器兼容)代码如下:import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#构造添加一个神经层的函数def add_...
2018-06-02 17:26:25 304
转载 使用TensorFlow构建神经网络训练一元二次函数
环境:PyCharm 2.018.1.3 x64 ,Python 3.6 ,TensorFlow version:1.8.0在pycharm中实现图的动态效果,通过这个步骤解决的:Setting->Tools->Python Scientific->Show plots in tool window ,然后取消勾选就可以里。最终训练效果如下图示。误差(loss)随训练次数的增...
2018-06-01 16:05:35 850
原创 使用TensorFlow和梯度下降算法训练线性模型
环境:PyCharm 2.018.1.3 x64 ,Python 3.6 ,TensorFlow version:1.8.0线性模型为:y=Weights*x+biases;真实模型:y_=0.1*x+0.3,Weights_=0.1,biases_=0.3;预测模型:y=Weights*x+biases,Weights的初值和biases的初值随机生成;计算y_和y的误差,并使用梯度下降算...
2018-05-30 11:48:37 371
转载 使用Python爬虫(1)——爬虫网易云音乐播放数大于1000万的歌
1.安装库selenium。2.将PhantomJS.exe文件复制到python安装目录下的script目录中。代码如下:from selenium import webdriverimport csv#网易云音乐歌单第一页的urlurl='http://music.163.com/#/discover/playlist/?order=hot&cat=%E5%85%A8%E9%83...
2018-05-10 16:18:03 1235
转载 用 Scikit-Learn 和 Pandas 学习线性回归
代码如下:#encoding:utf-8import matplotlib.pyplot as pltimport numpy as npimport pandas as pdfrom sklearn import datasets,linear_modeldata=pd.read_csv('ccpp1.csv')#导入数据#print(data.head())#打印前五行数据pr...
2018-05-10 10:42:41 333
转载 Python实现将文件夹中的文件分类写入到文本文件中
代码如下:#encoding:utf-8#files目录下有文件和文件夹,程序以递归的方式获得子文件夹中的文件import osdef listFilesToTxt(dir,file): file_list=os.listdir(dir)#获取dir文件中所有的文件和文件夹的名字,以列表的形式返回 for file_name in file_list: new...
2018-04-30 22:06:06 987
原创 Python实现对不同类型文件的分类
代码如下:#encoding:utf-8#实现步骤#1.将该目录下的所有文件名获取到(该目录中不包含文件夹)#2.对文件名进行切片,获取到文件后缀#3.根据文件后缀进行分类import osimport shutilimport syspath="files"if not os.path.exists(path): #sys.exit() exit()os.c...
2018-04-30 21:58:51 1875
转载 Python实现文件复制
代码如下:#encoding:utf-8#本程序实现文件复制功能source_file=open("d.txt","r",encoding="utf-8")dst_file=open("e_bat.txt","a",encoding="utf-8")#a表示追加,如果没有该文件则新建它while True: content=source_file.read(1024)#每
2018-04-30 21:48:13 850
转载 不同分类算法的比较(决策树,K最邻近分类器)
代码如下:from sklearn import datasetsiris=datasets.load_iris()x=iris.datay=iris.targetfrom sklearn.cross_validation import train_test_splitx_train,x_test,y_train,y_test=train_test_split(x,y,test_si...
2018-04-30 21:39:00 1405
转载 K邻近算法——对数据进行分类
代码如下:from scipy.spatial import distance#a是距离训练数据的一点,b是距离测试数据的一点def euc(a,b): return distance.euclidean(a,b)class ScrappyKNN(): def fit(self,x_train,y_train): self.x_train=x_train ...
2018-04-30 21:32:27 755
转载 Softmax Regression算法处理多分类问题(2)——使用训练好的算法模型对数据进行预测
代码如下:# coding:UTF-8import numpy as npimport random as rddef load_weights(weights_path): '''导入训练好的Softmax模型 input: weights_path(string)权重的存储位置 output: weights(mat)将权重存到矩阵中 ...
2018-04-30 20:53:03 736
转载 Softmax Regression算法处理多分类问题(1)——训练算法模型
代码如下:# coding:UTF-8import numpy as npdef load_data(inputfile): '''导入训练数据 input: inputfile(string)训练样本的位置 output: feature_data(mat)特征 label_data(mat)标签 k(int)类别的...
2018-04-30 20:48:55 445
转载 使用决策树对数据进行分类——识别橘子苹果
代码如下:#encoding:utf-8from sklearn import tree#1表示光滑,0表示粗糙features=[[140,1],[130,1],[150,0],[170,0]]#0表示苹果,1表示橘子labels=[0,0,1,1]#创建一个分类器(使用决策树作为分类器),它现在只是一个没有规则的盒子,所以需要训练它clf=tree.DecisionTreeCla...
2018-04-28 21:33:21 2167
转载 用Python实现梯度下降算法
代码如下:import numpy as npfrom numpy.linalg import invfrom numpy import dotfrom numpy import matX=mat([1,2,3]).reshape(3,1)Y=2*X#theta=theta-alpha*(theta*X-Y)*Xtheta=1alpha=0.1for i in range(10...
2018-04-28 21:26:44 522
转载 用Python实现最小二乘法
代码如下:#encoding:utf-8import numpy as npfrom numpy.linalg import invfrom numpy import dotfrom numpy import matX=mat([1,2,3]).reshape(3,1)Y=2*X#此实验的函数模型(最简单的模型)print(X)#theta=(X.T*X)^-1*X.T*Yth...
2018-04-28 21:18:21 598
原创 使用numpy对矩阵进行运算
代码如下:#encoding:utf-8import numpy as npfrom numpy.linalg import invfrom numpy import dotfrom numpy import matA=np.mat([1,1])#创建一个一行一列的矩阵print('A矩阵为:\n',A)print('A矩阵的转置矩阵为(A.T):\n',A.T) #打印A矩阵的转...
2018-04-28 21:12:09 637
原创 自适应性神经元(3)——对数据处理的结果
在程序中,我们设定了50次迭代,随着迭代的进行,模型对数据分类错误的次数在不断下降,从而对数据分类的准确度就越高。自适应性神经模型对iris.data.csv中的数据进行分类的结果如下图:...
2018-04-28 21:02:14 301
原创 自适应性神经元(2)——用类对数据进行处理
代码如下:#encoding:utf-8import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport matplotlibfrom matplotlib.colors import ListedColormapfrom adalinegd import AdalineGDzhfont1=matpl...
2018-04-28 20:57:21 303
原创 自适应性神经元(1)——类的实现
代码如下:#encoding:utf-8import numpy as npclass AdalineGD(object): """ eta: float 学习效率,处于0和1 n_iter: int 对训练数据进行学习改进次数 W_:一维向量 存储权重数值 error_: 存储每次迭代改进时,网络对数据进行错误判断...
2018-04-28 20:41:48 495
原创 神经网络(3)———用感知器类对数据分类的结果
这个神经模型可以对线性可分的数据进行分类。 使用该神经模型对iris.data.csv中的数据进行分类并将分类的结果可视化后的效果如下图:
2018-04-28 20:24:59 879
原创 神经网络(2)——用已经实现的感知器类对数据进行分类
代码如下:#encoding:utf-8import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport matplotlibfrom perceptron import Perceptronfrom matplotlib.colors import ListedColormapfrom adalin...
2018-04-28 20:20:42 1081
原创 神经网络(1)-——实现感知器类
代码如下:import numpy as npclass Perceptron(object): """ eat:学习率 n_iter:权重向量的训练次数 W_:神经分叉权重向量 errors_:用于记录神经元判断出错次数 """ def __init__(self,eta=0.01,n_iter=10): self.et...
2018-04-28 12:26:24 222
原创 Python 数据分析可视化
1、画图需要使用 matplotlib这个包代码如下:import matplotlib.pyplot as pltyear=[1950,1970,1990,2010]pop=[2.519,3.692,5.263,6.972]values=[0,0.6,1.4,1.6,2.2,2.5,2.6,3.2,3.5,3.9,4.2,6]plt.xlabel('year')#添加x轴标签plt....
2018-04-25 22:55:25 465
转载 Python面向对象三大特性案例之养宠物
1、继承2、封装3、多态4、实现了__str__()方法代码如下:#encoding:utf-8class Animal: def __init__(self, name, age=1): self.name = name self.age = age def eat(self): print("%s在吃饭" % self) ...
2018-04-23 20:36:13 1535
转载 Python面向对象案例之语音计算器
实现特点:1、链式编程。2、重构简化代码(使用python的装饰器、描述器)。3、描述器的功能:将类方法变成类属性。代码如下:#encoding:utf-8import win32com.clientclass Caculator: def __check_num_zsq(func): def inner(self,n): if not isi...
2018-04-23 20:21:54 539
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人