pat-1003 Emergency

pat-1003 Emergency

一、原题

原题截图
几个城市,每个城市有一定数量的救援队,输出最短路径的条数,输出在最短的几条路径中,能集结到的最多的救援队数量。

二、思路

使用深度优先遍历。
代码中N,M,C1,C2为原题目中的变量,N-城市数量,M-路的数量,C1-起点,C2-终点
roads-使用二维数组来记录路径长度,teams-记录每个城市的救援队数量

dfs(当前的城市,当前路径的长度,当前累积的救援队数量)
在示例中

  1. 访问0号城市,发现和0号城市相连、没有走过的城市有1、2、3号 
    
  2. 	访问1号城市,发现和1号城市相连、没有走过的城市有2号
    
  3. 		访问2号城市,到终点,更新全局变量,结束当前层,退回到1号(第二条)
    
  4. 	第二条中,和1号城市相连、没有走过的城市 没有了,结束当前层,退回到0号(第一条)
    
  5. 第一条中,和0号城市相连、没有走过的城市还有2、3号(for循环保证了不会再走一遍1号)
    
  6. 	访问2号城市,到终点,更新全局变量,结束当前层,退回到0号(第一条)
    
  7. 第一条中,和0号城市相连、没有走过的城市还有3号(for循环保证了不会再走一遍1、2号)
    
  8. 	访问3号城市,和3号城市相连、没有走过的城市有4号
    
  9. 		访问4号城市,和4号城市相连、没有走过的城市有2号
    
  10.    		访问2号城市,到终点,更新全局变量,结束当前层,退回到4号(第九条)
    
  11.    	第九条中,和4号城市相连、没有走过的城市 没有了,结束当前层,退回到3号(第八条) 
    
  12.    第八条中,和3号城市相连、没有走过的城市 没有了,结束当前层,退回到0号(第一条)
    
  13. 第一条中,和0号城市相连、没有走过的城市 没有了,结束当前层,全部结束
    

示例遍历顺序

dfs(0,0,1)->dfs(1,1,3)->dfs(2,2,4)
            dfs(2,2,2)
            dfs(3,1,6)->dfs(4,2,9)->dfs(2,3,10)

三、代码

#include<iostream>
#include<algorithm>

using namespace std;
#define MAXN 510
#define INF 1e9

int N, M, C1, C2;
int roads[MAXN][MAXN] = { 0 };
int teams[MAXN];
int dist=1e9;//最短路径长度
int teamsAccumulated;//积累的团队数量
int roadsNumber;//最短路径数量
int visited[MAXN];//用于控制当前路径不走重复的路

void dfs(int currentCity,int currentDist,int currentTeamsAccumulated){
	if (currentCity == C2){//到达终点
		if (currentDist < dist){//新的最短路径
			dist = currentDist;
			roadsNumber = 1;
			teamsAccumulated = currentTeamsAccumulated;
		}
		else if (currentDist == dist){//新增一条最短路径
			roadsNumber++;
			teamsAccumulated = currentTeamsAccumulated > teamsAccumulated ? currentTeamsAccumulated : teamsAccumulated;
		}
	}
	for (int i = 0; i < N; i++){
		if (i != currentCity&&roads[currentCity][i] && !visited[i]){
			visited[i] = 1;
			dfs(i, currentDist + roads[currentCity][i], currentTeamsAccumulated + teams[i]);
			visited[i] = 0;
		}
	}
}

int main(){
	cin >> N >> M >> C1 >> C2;
	int tempc1, tempc2, templength;
	for (int i = 0; i < N; i++){
		cin >> teams[i];
	}
	for (int i = 0; i < M; i++){
		cin >> tempc1 >> tempc2 >> templength;
		roads[tempc1][tempc2] += templength;
		roads[tempc2][tempc1] += templength;
	}
	visited[C1] = 1;
	dfs(C1, 0, teams[C1]);
	cout << roadsNumber << " " << teamsAccumulated << endl;
	return 0;
}

四、结果与总结

结果与总结
在dfs的代码里面,其实可以在路径长度超过当前已保存的最短路径就返回,这样剪枝效率应该会高一些,但是已经过了,就没有再改了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sunny_cube

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值