最近打算准备毕设,所以需要仔细了解一下中文词向量的最近发展,发现一个比较完整的系列文章:
参考原文链接:https://bamtercelboo.github.io/2018/08/16/chinese_embedding_paper_finished
Paper
-
Component-Enhanced Chinese Character Embeddings
这是一篇2015年发表在EMNLP(Empirical Methods in Natural Language Processing)
会议上的论文,作者来自于香港理工大学 — 李嫣然。
介绍:在本文中,考虑将每个汉字的组件构成一个component列表(可以从在线新华词典中获取相应的component列表),其中将部首信息放在列表的最前面,E:component列表,C:上下文词,Z:目标词。 &&:结合E和C,基于CBOW框架计算出当前目标词的一个词向量表示。
-
Joint Learning of Character and Word Embeddings
这是一篇2015年发表在IJCAI (International Joint Conference on Artificial Intelligence)
会议上的论文,作者来自于清华大学 — 陈新雄,徐磊。
介绍:这是一篇基于汉字的CWE模型:基于已有的词向量,引入汉字来增强词的效果。核心思想:把CBOW中的词替换成词和字的联合表示,w:word embedding, c:character embedding,这种联合表示既可以是addition,也可以是concate.
-
Improve Chinese Word Embeddings by Exploiting Internal Structure
这是一篇2016年发表在NAACL-HLT(Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies)
会议