中文词向量学习记录-综述

最近打算准备毕设,所以需要仔细了解一下中文词向量的最近发展,发现一个比较完整的系列文章:

参考原文链接:https://bamtercelboo.github.io/2018/08/16/chinese_embedding_paper_finished

Paper

  1. Component-Enhanced Chinese Character Embeddings
    这是一篇2015年发表在EMNLP(Empirical Methods in Natural Language Processing)会议上的论文,作者来自于香港理工大学 — 李嫣然。

介绍:在本文中,考虑将每个汉字的组件构成一个component列表(可以从在线新华词典中获取相应的component列表),其中将部首信息放在列表的最前面,E:component列表,C:上下文词,Z:目标词。  &&:结合E和C,基于CBOW框架计算出当前目标词的一个词向量表示。

  1. Joint Learning of Character and Word Embeddings
    这是一篇2015年发表在IJCAI (International Joint Conference on Artificial Intelligence)会议上的论文,作者来自于清华大学 — 陈新雄,徐磊。

介绍:这是一篇基于汉字的CWE模型:基于已有的词向量,引入汉字来增强词的效果。核心思想:把CBOW中的词替换成词和字的联合表示,w:word  embedding, c:character embedding,这种联合表示既可以是addition,也可以是concate.

  1. Improve Chinese Word Embeddings by Exploiting Internal Structure
    这是一篇2016年发表在NAACL-HLT(Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies)会议

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值