Date: 2019-07-29
数量关系中找规律题,根据一组数字可以找到不同的规律,同时需要根据所给的选项进行筛选相应的选项。
1. 22 ,24 ,27 ,32 ,39 ,( 50)
分析:相邻两数差值为质数序列;从第二项起,后一项减前一项的差值为:2,3,5,7,11
2. 0.75 ,0.65 ,0.45 ,( 0.55)
分析: 75=5×5×3,65=5(5+5+3),45=5×3×3,则下一个5(5+3+3)=55
3. 12,2,2,3,14,2,7,1,18,3,2,3,40,10,( 1),4
分析: 四个为一组,abcd,有:a = b*c*d
4. 7 , 9 , -1 , 5 , (-3)
分析: 从第三项起,有:,即,
(7-9)/2 = -1;
(9-(-1))/2 = 5;
(-1-5)/2 = -3
5. 49/800 , 47/400 , 9/40 , ( 43/100 )
分析:对原数组进行改写成:49/800, 47*2/800,45*4/800,则应该是43*8/800=43/100.
6. 在全县上下的共同努力下,某县广均税费负担逐年下降,2001年比2000年下降了3%.2002年下降了4%,2003年比2002年下降下5%,问2003年该县的户均税费负担比2000年下降了百分之几? 答案:11.536%
分析:其实可以不用计算,根据判断可得。肯定小于3%+4%+5%=12%,选A 或者计算方法:1-0.95*0.96*0.97
7. 1/2,1/6,1/12,1/20,1/30,(1/42 )
分析: 分母是2=1*2;6=2*3;12=3*4;20=4*5;30=5*6;42=6*7; 或者分母是
8. 2 , 90 , 46 , 68 , 57 , ( 62.5)
分析:
9. 一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球和3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法,每次取出7个黄球和3个白球,这样操作M次后,黄球拿完了,白球还剩24个。问木箱内原共有乒乓球多少个? 264个
分析: 可以得到如下表达式:
解为:m=24, n=32.
10. 已知2020是20个连续的偶数之和,那么这20个偶数中最大的是多少?( 120)
分析:
等差数列问题:
设这20个偶数的最小偶数为x,则最大的偶数为x+19*2=x+38
即(x+x+38)*(20/2)=2020
解得x=82,则x+38=120.
11. 某商店实行促销,凡购买价值200元以上的商品可优惠20%,那么用300元在该商店最多可买下价值(350)元的商品?
分析: 最多可以买:300/(100%-20%)=375
12. 2 ,3 ,2 ,(5) ,6
分析: 解释1:2作为中间数,关于2对称:(2+6)/4 = (3+x)/4 = 2
解释2:
13. 2 ,3 ,6 ,9 ,17 ,(23)
分析: 6+9 = 15,3+17 = 20, 则第一项和最后一项之和为25,即2+x = 25 x= 23
14. 3 , 8 , 11 , 9 , 10 , (10 )
分析: 前两项的首位数相加等于第三项,3+8=11,8+1=9,1+9=10,所以下一个为9+1=10
15. 4 ,5 ,(13 ) ,40 ,104
分析:
4=0^2+4
5=1^2+4
13=3^2+4
40=6^2+4
104=10^2+4
其中0,1,3,6,10依次递增1,2,3,4
16. 4.5, 3.5, 2.8, 5.2, 4.4, 3.6, 5.7, (2.3)
分析: 两项为一组,两项之和为8。 即:4.5+3.5=8 2.8+5.2=8 4.4+3.6=8 5.7+2.3=8
17. 一条正三角形小路如右图所示,甲、乙两人从A点同时出发,朝不同方向沿小路散步,已知甲的速度是乙的2倍,问以下哪个坐标图能准确描述两人之间的直线距离与时间的关系(横轴表示时间,纵轴表示距离)?
解释: 他们之间的距离是均匀增大和减小的,斜率是可以计算出来的 他们之间的距离a/三角形的高h=乙移动的距离x/边长b的一半 所以 a=2x/b*h 而x=v乙*t 所以斜率k=2v乙h/b 自变量为t
18. 1 ,2 ,3 ,7 ,46 ,(2109)
分析: 每一项的平方减去前一项 ,即:从第三项起有: