文章目录
一、显含规律
相邻数之间通过简单的加、减、乘、除、平方、开方等运算发生联系,产生规律,主要有以下几种规律:
1.1 四则运算
相邻两个数加、减、乘、除等于第三数或者是相邻两个数加、减、乘、除后再加或者减一个常数等于第三数。
1.2 等差数列
数列中各个数字构成等差数列,包括数列中相邻两个数相减后的差值成等差数列的二级等差数列和两次差值构成等差数列的三级等差数列。
----------------------------------------例题解析-----------------------------------------
例 1:1.1 ,2.2 ,4.3 ,7.4 ,11.5 ,( )
A、15.5 B、15.6 C、15.8 D、16.6
分析:整数部分的规律是1、2、4、7、11……二阶等差数列,所以下一项是16,小数部分的规律是1、2、3、4、5……一阶等差数列,下一项是6。综合,结果是 16.6。
例 2:3 ,2 ,5/3 ,3/2 ,( )
A、7/5 B、5/6 C、3/5 D、3/4
分析:全部用分数表示为:3/1、4/2、5/3、6/4,分子分母分别为一阶等差数列,所以下一个为 7/5。
例 3:1.16 ,8.25 ,27.36 ,64.49 ,( )
A、65.25 B、125.64 C、125.81 D、125.01
分析:整数部分是 n3,小数部分是(n+3)2。
例 4:2 ,12 ,36 ,80 ,150 ,( )
A、250 B、252 C、253 D、254
分析:相邻数字之差为:10、24、44、70、x-150,再相邻数字之差为:14、20、26、x-220,观察前三项可知是公差为 6 的等差数列,于是 x - 220 = 26 + 6 = 32,于是 x = 252。
例 5:10, 17, 26, 37,( )
A、46 B、52 C、50 D、56
分析:相邻数字之差为:7、9、11、x-37,再做一次差,为:2、2、x-48。可知是公差为 2 的等差数列,于是 x-48=2,即 x = 50。
例 6:( ) , 36 ,19 ,10 ,5 ,2
A、77 B、69 C、54 D、48
分析:做一次差得:x-36、17、9、5、3,做两次差得:x-53、8、4、2,猜测前项是后项的两倍,得出 x-53 = 16,x = 69,看到选项有它,猜对了。
例 7: 20/9,4/3,7/9,4/9,1/4,( )
A、5/36 B、1/6 C、1/9 D、1/144
分析:统一分母,为:80/36、48/36、28/36、16/36、9/36、x/36,分子做一次差得:32、20、12、7、9-x,再做一次差为:12、8、5、x-2,再做一次差为:4、3、7-x,猜测 7-x=2,x=5,发现选项有 5/36,猜对了。
1.3 等比数列
数列中各个数字依次构成等比数列,包括二级等比数列或者三级等比数列。
1.4 平方数列
前一个数的平方等于第二个数,包括前一个数的平方再加减一个常数等于第二个数的平方数列变形。
----------------------------------------例题解析-----------------------------------------
例 1:3 ,7 ,47 ,2207 ,( )
A、4414 B、6621 C、8828 D、4870847
分析:后一个数等于前一个数平方减2
1.5 倍数数列
前一个数乘一个倍数加减一个常数等于第二个数。
例 1:5,10,21,44,( ),186
A、122 B、142 C、91 D、175
分析:每两个数之间的差为 5、11、23、x-44、186-x,观察前三项可得规律为:f(n) = f(n-1) × 2 + 1,因此,x - 44 = 23 × 2 + 1,解的 x = 91。满足 186 - x = (x - 44) × 2 + 1,因此猜测成功。答案为 91。
1.6 隔项数列
数列相隔两项呈现一定规律,这类数列包含的数字多。
----------------------------------------例题解析-----------------------------------------
例 1:0.75 ,0.65 ,0.45 ,( )
A、0.78 B、0.88 C、0.55 D、0.96
分析:先看题目,发现好像数字递减,看答案是否有<0.45的数【没有小于0.45的数,说明规律并非递减】;只给出了三个数,可能两两组合,绝对值相等:|0.75-0.65|=|0.45-X| ②-①=④-③ 选0.55。
例 2:19,4,18,3,16,1,17,( )
A、5 B、4 C、3 D、2
分析:19-4=5、18-3=5、16-1=5、17-x=5。于是 x=2。
1.7 奇偶数列
数列全奇数或者全偶数或者奇偶间隔。
----------------------------------------例题解析-----------------------------------------
例 1:0 ,12 ,24 ,14 ,120 ,16 ,( )
A、280 B、32 C、64 D、336
分析:奇数项:0、24、120、336、…、(n3-n) 偶数项:12、14、16、18、…、(n+2)
例 2:3/7 ,5/8 ,5/9 ,8/11 ,7/11 ,()
A、11/14 B、10/13 C、15/17 D、11/12
分析:当出现两个一样过极相似的数字时,可以考虑分奇数项和偶数项来看。奇数项分子分母都是公差为 2 的等差数列,偶数项的分子分母是公差为 3 的等差数列,下一项是偶数项,因此是上上一项分子分母加 3,即:11/14。
1.8 排序数列
数列有特殊的序列规律。
----------------------------------------例题解析-----------------------------------------
例 1:22 ,24 ,27 ,32 ,39 ,( )
A、40 B、42 C、50 D、52
分析:看到数字增长,且增速不大,猜测和差值有关,做一次差为:2、3、5、7、x-39,前面都是质数,于是 x-39 = 11,得 x=50。
1.9 前后项
第三项开始,每一项和前面两项数字有关。
----------------------------------------例题解析-----------------------------------------
例 1:2 , 90 , 46 , 68 , 57 , ( )
A、65 B、62.5 C、63 D、62
分析:前面两个数之和是后一个的2倍
例 2:1 ,2 ,5 ,29 ,()
A、34 B、846 C、866 D、37
分析:前面两个数的平方再求和是后一个数,因此答案是:52 + 292 = 866。
例 3:1, 2 , 1 , 6 , 9 , 10 , ( )
A、13 B、12 C、19 D、17
分析:1+2+1=4、2+1+6=9、1+6+9=16、6+9+10=25,连续三项的和呈现一定规律,即 22、32、42、52,那么下一个就是 62 = 36,即 9 + 10 + ? = 36,答案为 17。
例 4:0.75 ,0.65 ,0.45 ,( )
A、0.78 B、0.88 C、0.55 D、0.96
分析:先看题目,发现好像数字递减,看答案是否有<0.45的数【没有小于0.45的数,说明规律并非递减】;只给出了三个数,可能两两组合,绝对值相等:|0.75-0.65|=|0.45-X| ②-①=④-③ ,因此答案为 0.55。
例 5:4 2 12 28 80 ( )
A、124 B、96 C、216 D、348
分析:第三项开始,每一项为前两项之和乘以 2。因此答案为 (28 + 80) × 2 = 216。
例 6:1 ,2 ,9 ,121 ,()
A、251 B、441 C、16900 D、960
分析:增速很快,猜测和平方有关,9 = 32,121 = 112,继续分析这个 3 和 11 是哪来的,发现 3 = 1 + 2,11 = 2 + 9,于是得出规律:f(n) = [f(n-2) + f(n-1)]2,因此答案为 (9 + 121)2 = 16900。
例 7:16 ,17 ,36 ,111 ,448 ,( )
A、639 B、758 C、2245 D、3465
分析:17 = (16 + 1) × 1,36 = (17 + 2) × 2,111 = (36 + 3) × 3,448 = (111 + 4) × 4。规律为:f(n) = [f(n-1) + 1] × (n-1),因此下一个就应该是 (448 + 5) × 5 = 2245。
例 8:1 ,2 ,5 ,29 ,()
A、34 B、846 C、866 D、37
分析:29 应该和 25 有关系,可以看成 29 = 25 + 4 = 52 + 22,发现 5 = 22 + 12,于是 f(n) = (f(n-1))2 + (f(n-2))2。于是 f(5) = 52 + 292 = 866。
例 9:3 ,7 ,47 ,2207 ,( )
A、4414 B、6621 C、8828 D、4870847
分析:看到 47,猜测和 49 有关,49 = 72,47 = 72 - 2,发现 7 = 32 - 2、2207 = 472 - 2。于是得出规律:每一项的值为前一项的平方减去 2,于是下一项为:22072 - 2 = 4870847。
例 10:5 , 6 , 6 , 9 ,(), 90
A、12 B、15 C、18 D、21
分析:从第三项开始,每一项是前两项减去 3 之和相乘的结果。(5-3)×(6-3)=6、(6-3)×(6-3)=9、(6-3)×(9-3)=18、(9-3)×(18-3)=90。
二、隐含规律
数列规律不明显,但每一个数字本身都暗含规律,综合来看才具有全局规律。
2.1 幂次规律
数列中每一个数字都是:
n 的平方(立方);
n 的平方(立方)加减一个常数;
n 的平方(立方)加减 n。
幂次呈等差数列。
----------------------------------------例题解析-----------------------------------------
例 1:1.16 ,8.25 ,27.36 ,64.49 ,( )
A、65.25 B、125.64 C、125.81 D、125.01
分析:整数部分分别是1、2、3、4、5的3次方,小数部分分别是4、5、6、7、8的平方,所以答案是 125.64。
例 2:1 , 4 , 16 , 57 , ( )
A、165 B、76 C、92 D、187
分析:4=1×3+1、16=4×3+4、57=16×3+9,规律为:前一个数乘以 3 ,再加上 n2,所以下一个是 187=57×3+16
例 3:4 ,5 ,( ) ,40 ,104
A、7 B、9 C、11 D、13
分析:5 = 13 + 4,104 = 43 + 40,归纳出 f(n) = (n-1)3 + f(n-1),因此第 3 项为:(3-1)3 + 5 = 13。
例 4:1 , 4 , 16 , 57 , ( )
A、165 B、76 C、92 D、187
分析:4=1×3+1、16=4×3+4、57=16×3+9。于是 f(n) = f(n-1) × 3 + n2,所以 f(5) = f(4) × 3 + 52 = 57 × 3 + 42 = 187。
例 5:0 ,6 ,78 ,() ,15620
A、240 B、252 C、1020 D、7771
分析:12-1=0、23-2=6、34-3=78、45-4=1020、56-5=15620。
例 6:2 ,12 ,36 ,80 ,150 ,( )
A、250 B、252 C、253 D、254
分析:2=1²×2、12=2²×3、36=3²×4、80=4²×5、150=5²×6,所以下一个是 6²×7,为 252。
2.2 倍数规律
数列中每一个数字都是 n 的倍数加减一个常数,而这些 n 本身构成一定规律。
----------------------------------------例题解析-----------------------------------------
例 1:5 , 6 , 6/5 , 1/5 , ()
A、6 B、1/6 C、1/30 D、6/25
分析:中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略。答案为:1/6
例 2:3 , 11 , 13 , 29 , 31 ,( )
A、52 B、53 C、54 D、55
分析:3 = 22 - 1、11 = 3² + 2、13 = 4² - 3、29 = 5² + 4、31 = 6² - 5,规律是 (n+1)2 + (-1)n × n,所以下一个是 72 + 6,为 55。
例 3:1 , 1 , 2 , 6 ,()
A、19 B、27 C、30 D、24
分析:f(n) = (n-1) × f(n-1),所以下一个是 4 × 6,为 24。
2.3 数位规律
一个数字的每一位的数字组合成新的数字。
----------------------------------------例题解析-----------------------------------------
例 1:1 , 13 , 45 , 169 , ( )
A、443 B、889 C、365 D、701
分析:1 = 12、1 + 3 = 22、4 + 5 = 32、1 + 6 + 9 = 42,因此下一项的数位和应该是 52 = 25,只有 889 才符合。
三、数图结合
数字和图形结合的一类题。
----------------------------------------例题解析-----------------------------------------
例 1:
A、20 B、24 C、18 D、40
分析:中间数字等于下面两个数字之和乘以上面数字,于是问号处为:3 × (4 + 4) = 24。