题目描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
思路如下:
1.不推荐 比较容易想的就是递归的方法实现,但是花费的时间比较多,可以看下如下主要思想的代码:
const getNum = function (n) {
// 爬楼梯的解法,可以想到的是用递归的方法
// 思路:第n个楼梯的上法是前面n-1,n-2的上法之和
if (n === 1) return 1;
if (n === 2) return 2;
if (n > 2) {
return getNum(n - 1) + getNum(n - 2);
}
};
我们可以看到上面的解法:递归的时间复杂度为 O(2^n),因为计算 f(n) 时需要先计算 f(n-1) 和 f(n-2),这样会产生很多重复计算。
2.使用迭代的方法,也就是在上面的方法上变化而来的,可以使用记忆化搜索技术来避免重复计算。迭代的时间复杂度为 O(n),空间复杂度为 O(1)
我们可以使用数组来帮助我们记忆,代码如下:
const getNum = function (n) {
if (n <= 2) return n;
// 使用数组来保存前面两种的上楼梯的方法
let dep = [1, 2];
// 循环将每层上楼梯的方法保存在数组中,最后返回最后一个元素的值即可
for (let i = 2; i < n; i++) {
dep[i] = dep[i - 1] + dep[i - 2];
}
return dep[n - 1];
};
console.log(getNum(5));