假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
这个题其实是斐波那契数列的问题。
第一级台阶有一种方法到达,第二级台阶有两种方法到达。第三级台阶可以先走两级到第一级,也可以走一级到第二级。
所以T(3)= T(2) + T(1);
所以代码为:
int climbStairs(int n) {
int po1 = 1;
int po2 = 2;
int p;
int i = 2;
if(n == 1)
return 1;
if(n < 1)
return 0;
while(i < n)
{
p = po1 + po2;
po1 = po2;
po2 = p;
i++;
}
return po2;
}