Selenium 自动化测试之纪念币预约

摘要

前段时间,2023 贺岁纪念币的预约火热地进行着,当晚我也凭借惊人的手速抢到了 3 *20 = 60 个,某天偶然打开农行预约纪念币网的站,发现预约端口还未关闭,便想着用 Selenium 自动化测试来实现全自动预约纪念币。
经过测试,预约 10 人的时间在 45 - 55 s 左右,速度还可以,但有些地方还可以再优化,如加载 csv 文件获取个人信息、使用多台手机同时接受短信验证码等,上述功能可能会在以后的更新中添加。

声明:本文只用于技术分享,禁止使用本文代码参与各种不当获利行为

Part I:基本 Selenium 自动化

打开农行纪念币预约网址,进入纪念币预约,可见布局如下:

welcome_page

接下来就是基本的 Selenium 自动化了,F12打开开发者工具,查看 “ 预约 ” 的 Xpath,但通过两次纪念币预约,我发现该元素的 Xpath 是随纪念币更改的,故每次要提前进入该网址获取本次预约的 Xpath。

将所有配置文件放在general_settings.py方便管理

# general_settings.py

# 驱动路径
path_chrome = Service_Chrome("../driver/chromedriver.exe")

# 预约链接
booking_url = "https://eapply.abchina.com/coin/Coin/CoinIssuesDistribution?typeid=202301"

# 预约界面 Xpath
welcome_page_xpath = '/html/body/div[5]/div[2]/table/tbody/tr[5]/td[4]/input[1]'
# main.py

browser = webdriver.Chrome(service=general_settings.path_chrome)  # 使用 Chrome 驱动
browser.get(general_settings.booking_url)


def welcome_page():
    """
    欢迎页面
    :return: None
    """
    browser.find_element(By.XPATH, general_settings.welcome_page_xpath).click()
    browser.find_element(By.XPATH, '//*[@id="I128"]/button[1]').click()  # 同意并继续

接下来,进入今天我们的主战场,布局如下:

booking_main

我将此页面分为如下五个部分:

  1. 基本个人信息(姓名、证件号码、手机号码)
  2. 图形验证码
  3. 短信验证码
  4. 兑换网点
  5. 兑换时间

其中,1、4、5 在本 Part 展示,2、3 将在下文展示。

1. 基本个人信息

由于本次自动化是多线程同时进行,且为了个人信息安全和后期再有纪念币预约可以直接使用,故将个人信息放入 MySQL 数据库中,使用 Python 第三方库 pymysql 获取数据库信息并填写。

# general_settings.py

# 数据库信息
host = ""  # 主机名(IP)
port = 3306  # 数据库端口,默认为 3306
user = ""  # 数据库用户名
password = ""  # 数据库密码
database = ""  # 信息所在 database(数据库)
table = ""  # 信息所在 table(表)
# main.py

def info_get(host: str, port: int, user: str, password: str, database: str, table: str):
    """
    通过 MySQL 数据库获取信息
    :param host: 主机名(IP)
    :param port: 数据库端口
    :param user: 数据库用户名
    :param password: 数据库密码
    :param database: 信息所在 database
    :param table: 信息所在 table
    :return: 信息的元组
    """
    info_MySQL = Connection(
        host=host,
        port=port,
        user=user,
        password=password
    )  # 连接数据库
    cursor = info_MySQL.cursor() 
    info_MySQL.select_db(database)  
    cursor.execute(f'SELECT *  FROM {table};')
    result = cursor.fetchall()  # 获取所有信息
    info_mysql = result[thread_index]  # 获取对应进程的个人信息
    cursor.close()
    info_MySQL.close()
    return info_mysql
# main.py

def fill_info(info: tuple):
    """
    填写信息函数
    :param info: 信息元组
    :return: None
    """
    browser.find_element(By.XPATH, '//*[@id="name"]').send_keys(info[1])  # 姓名
    browser.find_element(By.XPATH, '//*[@id="identNo"]').send_keys(info[2])  # 身份证号
    browser.find_element(By.XPATH, '//*[@id="mobile"]').send_keys(info[3])  # 电话号码

2. 兑换网点

兑换网点是一个下拉框对象,可以使用 Selenium 中 Select 函数对网点进行选择。省行、分行、支行都很顺利,但营业处选项遇到了一些问题,营业处的文本为 “营业处 + 当前剩余纪念币数”,若使用select_by_index会导致不知道默认选择的营业处是否还有纪念币。

problem_place

故做以下修改:先选择默认营业处,若默认营业处剩余纪念币数 <= 20,则对营业处的列表进行遍历,选择剩余纪念币数 >= 20 的营业处,若都没有剩余,则输出 “ 该营业处没有剩余纪念币 ”。当然,你也可以再对支行、分行甚至省行(只要你能跑)的列表进行遍历,选择有剩余的营业处。

# general_settings.py

# 预约地址
place_arr = ["", "", "", 4]  # 分别为 [省行, 分行, 支行, 默认营业厅序号(从 1 开始为第一个)]
# main.py

def choose_place(province: str, city: str, country: str, default_bank_index: int):
    """
    选择兑换网点
    :param province: 省行名称
    :param city: 分行名称
    :param country: 支行名称
    :param default_bank_index: 默认营业处序号(从 1 开始为第一个营业处)
    :return: None
    """
    select_province = browser.find_element(By.XPATH, '//*[@id="orglevel1"]')  # 选择省行
    Select(select_province).select_by_visible_text(province)
  
	select_city = browser.find_element(By.XPATH, '//*[@id="orglevel2"]')  # 选择分行
    Select(select_city).select_by_visible_text(city)

    select_country = browser.find_element(By.XPATH, '//*[@id="orglevel3"]')  # 选择支行
    Select(select_country).select_by_visible_text(country)

    select_bank = browser.find_element(By.XPATH, '//*[@id="orglevel4"]')  # 选择营业处
    bank_text = select_bank.text
    bank_arr = bank_text.split("\n")
    default_coin_number = bank_arr[default_bank_index].split(" ")

    # 判断该营业处是否有剩余纪念币
    if int(default_coin_number[1]) >= 20:
        Select(select_bank).select_by_index(default_bank_index)
    else:
        for bank_index in range(1, len(bank_arr)):
            coin_number = bank_arr[bank_index].split(" ")
            if int(coin_number[1]) >= 20:
                Select(select_bank).select_by_index(bank_index)
                break
            else:
                print(f"进程{thread_index} 没有营业厅有纪念币了...")
                break

3. 兑换时间

选择时间可以通过两次定位来实现,但是速度较慢且 Xpath 路径不好写,且有时会涉及到 frame ,此时需要切换 frame,比较麻烦。所以本文使用 js 来处理时间控件,实现原理为删除 input 的 readonly 属性,直接输入日期。

# general_settings.py

# 兑换时间
coindate = ""  # 按照'年-月-日'输入日期,例如:'2023-01-01'
# main.py

def coin_date(coindate: str):
    """
    选择兑换时间
    :param coindate: 兑换时间
    :return: None
    """
    js_date = 'document.getElementById("coindate").removeAttribute("readonly");'  # 执行 js 代码去除 readonly 属性
    browser.execute_script(js_date)
    browser.find_element(By.ID, 'coindate').clear()  # 清除输入框
    browser.find_element(By.ID, 'coindate').send_keys(coindate)  # 输入日期

至此,基本的 Selenium 自动化已经完成。接下来,就是本文的核心:图像验证码与短信验证码。

Part II:图形验证码

1. 图形验证码数据集获取

既然选择用深度学习识别验证码,首先就是获取验证码数据集。

pic_captcha_url

在预约界面查找元素可知验证码的 src,刷新后会显示不同的图形验证码,这样图形验证码的数据源就搞定了。下面就是使用 requests 库爬取图形验证码,并以二进制方式写入到本地文件,这里一共爬取 3000 张验证码。

# captcha_get.py

import time
import os
import requests


url = f'https://eapply.abchina.com/coin/Helper/ValidCode.ashx'

if not os.path.exists('./pic_captcha'):
    os.makedirs('./pic_captcha')

for index in range(3000):
    file = f'./pic_captcha/captcha_{index}.png'
    re = requests.get(url)
    with open(file, 'wb') as f:
        f.write(re.content)
    print(f'captcha_{index} finished...')
    time.sleep(0.1)

但由于这些验证码之后还需要进行标注,比较麻烦,特此将我用 2captcha 标注好的 3000 张验证码贴出来,格式为 " 验证码_piccaptcha+hash.png "。(别问我为什么不直接用 2captcha,因为一个验证码要 5 s,这速度还不如直接手动输入)

pic_captcha.png

下载数据集 - Kaggle

下载数据集 - AliCloud

2. 训练模型

下面介绍本文采用的 CNN 模型 ocr_jasper,基于 mobildenetv2 修改而来,下图为网络结构。

ocr_jasper_network

训练代码在此就不详细说明了,详情可看仓库中 ” ocr_jasper_train “ 内的 README.md 。训练完成后,会得到 model.onnxcharsets.json 两个文件,分别为模型文件和字符集文件,这两个文件需配合 ocr_jasper 库使用。

3. 获取页面中图形验证码

上文爬取验证码时提到过,图形验证码的数据源是一条链接,所以无法直接通过链接直接下载图形验证码,故对图形验证码的元素进行截图并保存,方便 ocr_jasper 调用。

# main.py

def pic_captcha_save():
    """
    定位验证码进行截图
    :return: None
    """
    captcha_img = browser.find_element(By.XPATH, '//*[@id="piccaptcha"]')  # 要截图的元素
    x, y = captcha_img.location.values()  # 坐标
    h, w = captcha_img.size.values()  # 宽高
    image_data = browser.get_screenshot_as_png()  # 把截图以二进制形式的数据返回
    screenshot = Image.open(BytesIO(image_data))  # 以新图片打开返回的数据
    result = screenshot.crop((x, y, x + w, y + h))  # 对截图进行裁剪
    result.save(f'./Captcha/pic_captcha_thread{thread_index}.png')

4. 使用 ocr_jasper 识别图形验证码

现在,就可以通过调用 ocr_jasper 来对图形验证码进行识别了,ocr_jasper 可以从本文的仓库中获取,在 CMD 或 Anaconda Prompt 中运行:

pip install {ocr_jasper} # 将 {ocr_jasper} 替换为 ocr_jasper 的相对或绝对路径 

接下来就可以在代码中调用 ocr_jasper 了,将代码中import_onnx_pathcharsets_path修改为训练好的模型和字符集文件的相对或绝对路径,默认放在项目根目录下的 Models 文件夹中。

# main.py

def pic_captcha_recognition():
    """
    使用 ocr_jasper 识别图形验证码
    :return: None
    """
    ocr_pic = ocr_jasper.OCR(import_onnx_path='./Models/model.onnx',charsets_path="./Models/charsets.json")
    with open(f'./Captcha/pic_captcha_thread{thread_index}.png', 'rb') as f:
        image = f.read()
    captcha_recognized = ocr_pic.classification(image)
    browser.find_element(By.XPATH, '//*[@id="piccode"]').send_keys(captcha_recognized)  # 验证码输入框
        
        
def get_text_captcha():
    """
    获取短信验证码
    :return: None
    """
    browser.find_element(By.XPATH, '//*[@id="sendValidate"]').click() 

5. 判断图形验证码是否识别正确

有时 ocr 会抽风,无法正确识别图形验证码,在此添加一个函数来判断是否识别正确。当识别错误时,id 为 errorCaptchaNo的元素会变成 ” 图形验证码错误 “;识别正确时,会变为 ” 短信验证码已发送成功 “,所以可以通过该元素文本长度来判断图形验证码是否识别正确。又因为captcha_success变量会跨函数多次调用,故将其定义为全局变量。

# main.py

def captcha():
    """
    判断图形验证码是否正确
    :return: None
    """
    global captcha_success
    while True:
        pic_captcha_save()
        time.sleep(1)
        pic_captcha_recognition()
        get_text_captcha()
        time.sleep(0.5)
        is_captcha_error = browser.find_element(By.XPATH, '//*[@id="errorCaptchaNo"]').text
        if len(is_captcha_error) == 7:
            browser.find_element(By.XPATH, '//*[@id="piccaptcha"]').click()  # 重新获取验证码
            browser.find_element(By.XPATH, '//*[@id="piccode"]').clear()
        elif len(is_captcha_error) == 10:
            captcha_success = True
            break

短信验证码与多线程并发

短信验证码与多线程并发内容可见我的个人博客

以上就是本次自动化测试预约纪念币的所有内容了,如果你喜欢我,欢迎关注我的 CSDN知乎,或者在下方留下你的评论,Bye!

遵守协议:BY-NC-ND

selenium自动化测试是一种用于网页应用程序的自动化测试工具,它可以模拟用户在网页上的操作,完成一系列的测试任务。纪念币预约是一项受欢迎的活动,参与者可以通过网上预约的方式获取限量发行的纪念币。 使用selenium自动化测试技术进行纪念币预约的测试可以带来以下优势: 1. 自动化测试可以提高测试的效率。通过编写脚本自动化测试可以模拟用户的点击、输入等操作,快速完成纪念币预约的流程。相对于手工测试,自动化测试可以节省大量的时间和人力。 2. 自动化测试可以增强测试的稳定性。手工测试容易受到人为因素的影响,导致测试结果不稳定。而自动化测试通过脚本的精确控制,可以保证每次测试的一致性和稳定性,提高测试的可靠性。 3. 自动化测试可以提供更详细的测试报告。selenium可以捕捉测试过程中的各项指标和操作日志,生成详尽的测试报告。这些报告可以帮助开发人员和测试人员更好地理解测试结果,快速定位和解决问题。 4. 自动化测试可以提升测试覆盖率。通过自动化测试,可以对纪念币预约的各个功能模块进行全面的测试覆盖,发现隐藏的缺陷和问题,提高软件的质量。 总结而言,selenium自动化测试可以提高纪念币预约系统的测试效率、稳定性和可靠性,同时提供详细的测试报告,帮助开发人员和测试人员更好地理解和解决问题。通过自动化测试纪念币预约可以更好地满足参与者的需求,提高用户体验。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JasperXzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值