电商风控系统(flink+groovy+flume+kafka+redis+clickhouse+mysql)

一.项目概览

电商的防止薅羊毛的风控系统

需要使用 groovy 进行风控规则引擎的编写 然后其它技术进行各种数据的 存储及处理

 薅羊毛大致流程

如果单纯使用 if else在业务代码中进行风控规则的编写 那么 维护起来会比较麻烦 并且跟业务系统强绑定不合适  所以一般独立成一个单独的系统

常见风控规则列举

风控引擎设计的核心点

业务逻辑概览

 事件接入中心

技术架构

分层

各单位占比

二.flink常见知识点实战

从下图可以看出 跟之前yarn类似 还是有管理 有大领导 校领导 打工人 打工人来执行任务

分别对应 jobmamager taskmanager taskslot 由 taskslot 执行任务 每个

2.1state

实战

首先看个入门级代码 就是对 字符串的出现次数的结果进行实时统计与打印

package com.juege.hope.opentech.flinktest;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkTurotial1_17 {

    public static void main(String[] args) throws Exception {

        //todo 1.创建执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //todo 2.读取数据
        DataStreamSource<String> stringDataStreamSource = env.readTextFile("D:\\juege\\code\\hope-backend\\opentech\\src\\main\\resources\\flinkTextSource.txt");

        //todo 3.进行数据处理 先 flatmap 再 keyby 再 sum 再打印输出
        stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {
                String[] words = s.split(" ");
                for (String word : words) {
                    collector.collect(new Tuple2<>(word, 1));
                }
            }
        }).keyBy(0).sum(1).print();

        //todo 4.执行任务
        env.execute("pantouyu");
    }

}

数据源

 显示结果如下

 使用state来实现sum方法的效果

package com.example.flinktest.test;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkTurotial1_17 {

    public static void main(String[] args) throws Exception {

        //todo 1.创建执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //todo 2.读取数据
        DataStreamSource<String> stringDataStreamSource = env.readTextFile("D:\\juege\\code\\flink-test\\src\\main\\resources\\flinkTextSource.txt");

        //todo 3.进行数据处理 先 flatmap 再 keyby 再 sum 再打印输出
        stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {
                String[] words = s.split(" ");
                for (String word : words) {
                    collector.collect(new Tuple2<>(word, 1));
                }
            }
        }).keyBy(0)
                .flatMap(new SumFunction()).print();
//                .sum(1).print();

        //todo 4.执行任务
        env.execute("pantouyu");
    }

}
package com.example.flinktest.test;

import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.util.Collector;

public class SumFunction extends RichFlatMapFunction<Tuple2<String, Integer>, Tuple2<String, Integer>> {
    private transient ValueState<Integer> sumState;

    @Override
    public void open(Configuration parameters) throws Exception {
        ValueStateDescriptor<Integer> descriptor = new ValueStateDescriptor<>("sumState", Integer.class);
        sumState = getRuntimeContext().getState(descriptor);
    }

    @Override
    public void flatMap(Tuple2<String, Integer> value, Collector<Tuple2<String, Integer>> out) throws Exception {
        String key = value.f0;
        Integer inputValue = value.f1;

        Integer currentSum = sumState.value();
        if (currentSum == null) {
            currentSum = 0;
        }

        currentSum += inputValue;
        sumState.update(currentSum);

        out.collect(new Tuple2<>(key, currentSum));
    }
}

2.2时间,窗口,水印

窗口

全局窗口

根据数据条数触发计算 比如如下就是 每来五条计算一次 并且并行度 等于1

滚动窗口

根据固定时间确定一个个窗口来触发计算 如下为10分钟

滑动窗口

根据固定时间确定一个窗口 然后间隔一定的时间触发窗口的计算

比如如下为 10分钟一个窗口 然后间隔时间为 1分钟那么 第一次计算的窗口

时间为 0-10分钟这个窗口内的数据 第二次 为 1-11分钟这个窗口内的数据 以此类推

时间

水印

水位线是个动态值 水印 = 当前窗口最大事件事件-允许延迟事件

当系统中以提取事件或者处理时间为准时不需要水印, 以事件事件为准时才需要水印 水印在国内又被称作水位线 在我们后面解决数据延迟问题时比较重要 这里先看下 不懂也没关系

2.3 窗口 时间 水印综合运用 解决数据延迟问题案例

如下图 左侧有个窗口 数据从上往下先后来了三条数据 

首先 水印/水位线 = 当前窗口最大事件事件-允许延迟事件

当水位线 >= 窗口时间时 就触发计算

以下说的除了窗口时间外都是事件事件 也就是 数据上携带的时间戳

举个例子 当前 窗口时间为10分钟 但是有一条本应该9分钟到的数据 12分钟才到 那么你可以设置

允许延迟的时间为 2分钟 那么 当12分钟那条数据到的时候,通过公式计算

水位线 = 12-2 = 10>10(窗口时间) 那么这个时候刚好可以触发计算 12分钟到的那条数据也被包含在了这个窗口

2.4CEP

复杂事件找共性处理

 

2.5并行度,任务,子任务

并行度

首先并行就是并发执行 前面我们说到了 一个taskmanager对应一个jvm进程,一个taskmanager中又有多个slot那么 一个slot就对应一个并行度,如果我们现在有两个jobmanager 每个jobmanager下有两个taskmanger 然后 每个taskmanager下面有三个slot 那么 这个flink app支持设置的最大并行度为多少呢 支持的最大并行度 = jobmanager数量* taskmanager数量*slot数量 =slot总数=2*2*3=12 那么 这个时候我如果设置 并行度为 10,那么就会有俩slot空闲 如果设置为12那就刚好

如果设置为14那么启动报错 因为我们计算结果支持的最大并行度为12

任务及子任务

通过以下这句话 判断下一张图片中任务及子任务数

 首先source为第一个任务 他的并行度为2 所以有俩子任务

然后flatmap的并行度是3 按上图所说 并行度相对于前一个任务发生了变化 无法合并 所以

flatmap是第二个任务 他的并行度为3 所以有三个子任务

 

再来到下一个算子 keyby 根据上图所说 就算这里的keyby并行度为3 他也是个独立的任务

然后keyby后面的并行度没变 并且没有新的keyby所以 后面俩算子都可以跟keyby合并成为一个任务

 

2.6checkpoint及savepoint

### 算法在电商平台中的应用 电商平台的制主要涉及欺诈检测、恶意订单识别以及异常行为监等方面。通过引入机器学习和数据分析技术,可以有效降低平台上的潜在险。 #### 数据准备与特征工程 构建模型的第一步是对数据进行预处理和特征提取。这通常包括交易记录、用户行为日志以及其他相关数据源的清洗和整理。例如,可以从用户的购买频率、登录时间间隔、IP地址变化等多个维度提取特征[^1]。 #### 模型选择与训练 对于电商场景下的问题,常用的建模方法有监督学习和支持向量机(SVM),随机森林(Random Forests)等分类器能够很好地捕捉到复杂的模式并区分正常活动与可疑操作之间的差异。如果考虑序列化的时间依赖关系,则长短时记忆网络(LSTM)可能是一个不错的选择,因为它们擅长处理具有时间上下文的数据集[^3]。 以下是基于Python的一个简单示例代码片段展示如何利用Scikit-Learn库创建一个基本的二元分类模型来进行初步的险评估: ```python from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix # 假设X为特征矩阵,y为目标变量(0表示无险;1表示存在) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) rf_model = RandomForestClassifier(n_estimators=100) rf_model.fit(X_train, y_train) predictions = rf_model.predict(X_test) print(f'Accuracy: {accuracy_score(y_test, predictions)}') print(confusion_matrix(y_test, predictions)) ``` 此脚本展示了如何分割数据集用于训练和测试目的,并使用随机森林作为预测工具之一。当然,在实际部署之前还需要经过更深入调优过程比如交叉验证参数调节等等步骤才能达到理想效果。 另外值得注意的是,除了上述提到的技术手段外,良好的业务理解同样重要——只有真正懂得自己所处行业的痛点所在,才能够设计出更加贴合需求的有效解决方案[^2]。 ### 结论 综上所述,实现一套完整的电商平台制系统不仅需要强大的技术支持,也需要深刻洞悉商业逻辑背后隐藏的机会点。两者相结合方能打造出既高效又可靠的防护体系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我才是真的封不觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值