跑通Chemformer

参考链接:

github链接
chatgpt提供解决方案
推理权重问题解决方案
推理文件问题解决方案
推理文件问题解决方案第二步

运行步骤及问题解决

git clone https://github.com/MolecularAI/Chemformer.git
conda env create -f env-dev.yml
poetry install

问题:- Additional properties are not allowed ('group' was unexpected)
解决:pip install poetry==1.2.0
rm poetry.lock
poetry install

问题:The lock file is not compatible with the current version of Poetry. Upgrade Poetry to be able to read the lock file or, alternatively, regenerate the lock file with the poetry lock command.
解决:rm poetry.lock
poetry install
sh example_scripts/fine_tune.sh

问题:hydra.errors.OverrideParseException: LexerNoViableAltException: 
解决:python -m molbart.fine_tune \
  "datamodule=[molbart.data.seq2seq_data.Uspto50DataModule]" \
  "data_path=data/uspto_50.pickle" \
  "model_path=models/bart/span_aug.ckpt" \
  "vocabulary_path=bart_vocab_downstream.json" \
  "task=backward_prediction" \
  "n_epochs=100" \
  "learning_rate=0.001" \
  "schedule=cycle" \
  "batch_size=64" \
  "acc_batches=4" \
  "augmentation_probability=0.5"

问题:3090要求cuda>11.0
解决:torch下载1.8.1+cu111,pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

sh example_scripts/predict.sh
解决:见github的issue

问题:推理乱码问题
解决:见github的第二个issue,主要问题还是没有提供输入文件uspto_50_test.txt和权重文件saved_models/uspto_50/span_aug/100_epochs/last.ckpt

结语

readme写的很详细,但是作为非化学者还是不懂在搞啥,再加上英文的偏差,让理解更加艰难.感觉是一个很小众的赛道,关注人较少,类似与分类问题,但是在该数据集也只能达到60多的top1?

解决:知网搜索类似中文文献.

### 成功运行HRNet模型的安装配置教程 #### 一、环境准备 为了确保能够顺利运行HRNet模型,需先准备好相应的开发环境。这包括但不限于操作系统的选择、CUDA与cuDNN的安装以及Anaconda环境的搭建。 对于操作系统的选取,推荐使用Ubuntu 20.04 LTS版本,因其稳定性较高且社区支持广泛[^3]。接着,在此平台上完成CUDA和cuDNN的部署工作至关重要。具体来说,应按照官方文档或者参考博客给出的方法来执行这些组件的安装过程,注意要匹配好所使用的GPU架构和支持的PyTorch版本所需的最低CUDA/cuDNN规格。 #### 二、软件包管理工具——Anaconda 采用Anaconda作为Python及其依赖库的管理者可以极大地方便后续的工作流程。过它创建独立的虚拟环境来进行项目开发是一种良好的实践方式,有助于避免不同项目的依赖冲突问题。安装完成后,利用`conda create -n hrnet_env python=3.8`命令建立一个新的名为hrnet_env的环境,并激活该环境以便继续下一步的操作。 #### 三、HRNet模型的具体实现与调用 针对HRNet模型本身而言,存在多种途径可对其进行训练或推理测试。一方面,如果打算基于MindStudio平台开展工作,则需要遵循特定指南完成从.pth到.onnx再到.om文件格式之间的转换;另一方面,也可以直接借助于开源框架如PyTorch提供的接口快速启动实验。例如,可以过调整`config.py`内的各项设置项并执行如下指令开始一轮新的迭代学习: ```bash python train.py --cfg configs/hrnet/w32_256x192_adam_lr1e-3.yaml ``` 上述代码片段展示了如何指定配置文件路径以加载预定义好的超参数组合,从而控制整个训练过程的行为模式[^2]。 此外,当涉及到实际应用层面时,还可以考虑集成SDK或其他高级API简化部署难度,比如利用mxBase进行高效能预测服务构建等方案均值得尝试探索[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值