手把手教你用LoRA训练自己的Stable Diffusion模型_lora stable diffusion

写在前面

    Stable Diffusion大家已经很熟悉了,那么如何训练自己的sd模型呢,今天我就介绍一下用LoRA训练sd的方法。

    我们以Chilloutmix为例,Chilloutmix可以生成好看的小姐姐。为了实验LoRA的能力,我们用小哥哥的图片对它进行微调,看效果如何。

一、准备数据

    从网上找一些小帅的图片,需要脸部清晰的、多角度的、正脸的、侧脸的、最好是背景干净的、各种表情的,这样增加训练集的多样性,提高模型的泛化能力。

    素材可以少(一般几十张就不少了,太多了也会过拟合),但是质量一定要高。 

    背景最好是纯色,想训练什么就突出什么,对于我们的任务,需要选取人脸为重点的图片。

    搜集好训练用的图像后,需要进行大小的规范处理,需要是64的倍数。一般都处理为512\*512,也可以是768\*768,不建议超过1024,尺寸越大则越吃显存。

    推荐一个批量处理图像尺寸的网站挺好用的:https://www.birme.net/ 

    处理后的图片长这样:

二、数据打标签

    其实我们要训练的是ControlNet,现在图片有了,还差图片的描述或者叫标签。我们不需要自己手动给每张图片打标签,sd-webui有现成的工具(DeepBooru)生成图片的标签。

    在sd-webui中进行如上操作,在3填写输入图片的目录,4填写输出目录,处理之后原图片和标签文件txt都会放在输出目录

    txt中的内容长这样,都是一个一个的标签:

    接下来我们要检查每张图片的标签,这里有两个简单的原则:

    1.通用的特征标签需要去掉,比如人物的眼睛、眉毛、鼻子、头发长度等代表人物本身的属性。凡是绑定在人物身上的,就要把它们删除。再比如出图只要黑色头发,那训练数据都喂黑色头发,并且删掉类似“black\_hair”的标签。

    2.留下非通用的标签,比如不是每张训练数据都是微笑的,所以对于微笑的数据应该有“smile”标签;不是所有的数据背景都是白色,就要保留“white backgroud”。

    具体保留或者增加什么标签其实没有硬性的规定,还是要根据具体情况反复尝试。

    sd-webui是有打标签的插件的,但是我更喜欢一款小工具,方便多人使用,BooruDatasetTagManager,地址:https://pan.baidu.com/s/1Ff7nkwf95AziCcZWTofIzg?pwd=jfoe 

    数据和标签准备好后放在一个自定义的目录中待用,有一点需要注意,文件名的格式是**数字\_字母**,前面的数字是每次训练过程中网络训练单张图片的**次数,**比如10\_asianman**。**这个目录命名很重要,一定不要写错!!!

三、执行训练

    LoRA训练我们使用kohya,kohya是日本人开发的,所以会经常出现日文,凑活这看吧。

    1.建一个conda环境
conda create --name kohya python=3.10
    2.进入环境
conda activate kohya
    3.下载kohya,别忘了下载sd-scripts目录中的项目:[kohya-ss (Kohya S.) · GitHub](https://github.com/kohya-ss/ "kohya-ss (Kohya S.) · GitHub"),下载后执行:
pip install -r requirements.txt
    4.因为我们是对Chilloutmix进行微调,所以先在这里下载Chilloutmix,并放在model目录下。

    5.启动kohya:
python kohya_gui.py --listen 0.0.0.0 --server_port 12348 --inbrowser
    6.打开地址[http://\[ip\]:12348/](http://10.20.26.29:12348/ "http://[ip]:12348/") ,并填写配置信息:

同时Parameters菜单中还有一些高级设置,比如batch size、train steps、LoRA的秩、Alpha等:

    **一些注意:**        

    1.训练时的总epoch数是算出来的,上面的Epoch好像没有用,计算公式是:

Max train steps * Train batch size / (数据总数 * 训练单张图片的次数),这算法很奇怪,他把Train batch size当做了batch size per device

    2.LoRA的秩用8就可以了,Alpha训练人物一般都设32,64都可以;训练风格可以用到128。

    3. 我看到有的文章说不能直接用safetensors文件直接训练,必须还要有config.json,但是我没有遇到这种情况。如果遇到了可以下载[这个](https://pan.baidu.com/s/1fD1yPD4eyIL2dj2CSHeuSg?pwd=fts2 "这个"),放在项目根目录的openai/clip-vit-large-patch14 和 laion/CLIP-ViT-bigG-14-laion2B-39B-b160k

    4.如果要全参数训练只需选择Dreambooth菜单,其它使用方式和LoRA基本相同:

    5.如果报这个错的话:'FieldInfo' object has no attribute 'required'. Did you mean: 'is\_required'?,是一些库的版本冲突了,可以试试如下命令:
pip install gradio==3.48.0
pip install pydantic==1.10.13 pydantic_core==2.14.6
pip install transformers==4.38.0
pip install accelerate==0.25.0
pip install torch==2.1.1
pip install xformers==0.0.23

四、执行推理

    训练成功后模型会存在输出目录,比如叫做models/last-000007.safetensors。

1.LoRA推理

(1)安装additional-networks

    如果sd-weiui的“text2img”和“img2text”中已经有Additional Networks菜单,则之间跳过该步骤。

    安装additional-networks插件,有两种方式:  
    a.在“Extensions-URL for extension's git repository”输入https://github.com/kohya-ss/sd-webui-additional-networks就可以安装了。

    b.如果网络不允许的话,就自行下载压缩包解压放到SD的extensions目录下。

    安装完之后一定要重启sd进程!之后我们可以看到选项卡上多了一个Additional Network选项。

(2)将Chilloutmix基础模型放在models/Stable-diffusion目录

(3)将训练完的LoRA模型放在sd-webui的extensions/sd-webui-additional-networks/models/lora目录

(4)使用基础模型重绘一张图片看看,都是小姐姐:

(5)使用LORA,再生成看看:

    emmm,已经有很强的男性特征,证明LoRA生效了。

2.全参数推理

    如果使用全参数训练的模型,模型结果比较大,有几个g。使用更简单了,放在models/Stable-diffusion中,直接选择这个模型就可以了。

    用LoRA训练自己的SD模型就介绍到这里,关注不迷路(#^.^#)
关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值