文生图画质升级指南:教你用 Stable Diffusion 产出高分辨率美图

点赞 + 关注 + 收藏 = 学会了

本文简介

在使用 SD 文生图功能时,我们能选得大模型大致有两类,一类是普通模型,另一类是更加新的 SDXL 模型。

普通模型就是 SD 的一些旧版模型,是将 SD 1.5 或 SD 2.0
作为底模开发出来的模型。这类模型也是我们现阶段用得最多的模型。它的基础分辨率是
512 x 512 像素。

如果我们需要将增加图片分辨率,直接修改文生图的
widthheight 出来的效果并不会很好。有时候会还会出现多头的情况,例如下图这种情况。

01.png

出现这种情况的原因是画面变大了,人家原本擅长绘画的尺寸是 512 x 512 ,而你现在一下子就将画布变大了很多,AI
自由绘画的像素点就变多了,这就有可能出现不合理叠加等问题。

高清修复功能 Hires. fix

介绍

那如果需要生成一张高分辨率的照片,又不想出现这种诡异的情况要怎么办呢?

我们可以使用 SD 提供的 Hires. fix 功能去放大图片。

也就是我们先生成图片,基于这个图片的内容选择一个放大算法去提升图片的分辨率,然后基于这个基础上再整体重绘图片。

看看这个实例:

02.png03.png
768 x 5121536 x 1024

左图的分辨率是 768 x 512,右图使用了 Hires. fix 功能放大了 2 倍。

在使用 Hires. fix 出来的效果是不错的,细节也更加丰富,但随之而来的缺点也很明显,启用了 Hires. fix
对图片进行放大,出图的时间会大幅增长,配置不高的设备甚至会爆显存。如果配置不高的电脑尽量不要将图片放大得太多,建议不超2倍。

实操

接下来是实操环境。

咒语:

(best quality, masterpiece, perfect face, beautiful and aesthetic:1.2, colorful, dynamic angle), handsome beautiful woman humanoid woman robot part metal wires with wavy short dark hair, elegant, red lighting, realistic, concept art, smooth, detailed, high quality, alphonse mucha and waterhouse,, <lora:add_detail:0.5>, (high contrast, official art, extreme detailed, highest detailed)
Negative prompt: portrait, doll, (leaning against wall:1.3), (asian, chinese:1.3), (worst quality, low quality), FastNegativeV2
Steps: 20, Sampler: DPM++ 2M SDE, Schedule type: Exponential, CFG scale: 6, Seed: 2055601004, Face restoration: CodeFormer, Size: 768x512, Model hash: 07341fcad2, Model: aniverse_v30Pruned, Downcast alphas_cumprod: True, Version: v1.9.3


  * 1
  * 2
  * 3
  * 4

本例用到的模型下载地址:文末领取~!

首先我们导入咒语,你也可以设置自己的提示词和参数。然后设置图片的宽高。这里我选择的是 768 x 512 ,也就是一张横屏的图片。

04.png

然后选择上图中红框上方的 Hires. fix。选中后展开它,在 Upscale by 这一项中设置 2 ,也就是等比放大2倍。

05.png

接着我还将 Denoising strength 设置成 0.6
,这个参数的意思是重绘幅度。在高清修复后还会对图片进行整体重绘,这个数值越高,重绘出来的图片就会和原图相差很大。

最后点击生成按钮。

03.png

Hires. fix 参数讲解

Hires. fix 面板中还有很多参数可以配置。

放大算法 Upscaler

Upscaler 选项中可以选择不同的高清算法对图片进行放大。

  • Latent:Latent开头的算法是一种简单直接的放大算法,对电脑配置要求不高,速度很 ,但出图效果不是很好 ,可能会出现模糊不清晰等情况。
  • Lanczos:当放大图像时,它通过计算权重,在原图的每个像素周围插入新的像素;当缩小图像时,它会从原图每个像素周围的像素中选择一个值来替换这个像素。这个算法的运算速度也算出图效果也还行 ,能用。
  • Nearest:是一种插值算法,通过缩放系数计算目标图像在原图中的坐标位置,然后找到原图中距离该位置最近的像素值,将其作为目标图像当前像素的数值。运算速度很 ,但可能会产生锯齿或者块状瑕疵 ,效果不太好。
  • ESRGAN_4x:通过学习低分辨率图像与其对应高分辨率图像之间的映射关系,实现从低分辨率图像到高分辨率图像的映射过程,进而实现图像的超分辨率。分辨率最高可增强4倍,但可能会出现锐化效果。适合油画风
  • LDSR:通过训练的潜在扩散模型来提升图像的分辨率,出图效果很好 ,出图的细节全给你拉满,但很吃电脑资源,运算速度也很慢,可以用龟速 来形容了。
  • R-ESRGAN 4x+:通过引入残差连接和递归结构,并使用生成对抗网络进行训练,在提高图像分辨率的同时也完善了图像细节,生成图像的质量比传统方法更高 ,推荐。
  • R-ESRGAN 4x+ Anime6B:是 R-ESRGAN 4x+ 的一个衍生版本,修复二次元漫画的效果很好
  • ScuNet GAN:可以去除图像噪声,同时保留原始细节,但速度慢。可以去除照片和绘画的早点。不太适合二次元漫画 ,但也勉强能用。
  • ScuNET PSNR:降噪效果很好,适用于需要保持更多图像细节、纹理、颜色等信息的处理场景,速度也很慢。不适合二次元漫画
  • SwinIR 4x:可将低分辨率图像发达为原来的4倍,生成高分辨率图像。可增强图像的真实感和清晰度。适用于图像重建、图像增强和图像超分辨率等方面,但出图速度很慢,适合修复绘画,不适合二次元漫画

在使用 Hires. fix 放大算法之前可以看看你正在使用的模型的作者有没有推荐使用什么放大算法,如果有的话就按照作者推荐的去选择就好了。

在写本文时,为了快速生成图片所以才选了 Latent

放大倍数和手动调整宽高

放大倍数:通过调整 Upscale by 可以等比放大原图,这个参数是比较常用的。但电脑配置不太高的工友建议不要把该值设置得大于2。

手动调整宽高:Resize width toResize height to 可以分别调整图形的宽和高,会修改原图的比例。不建议使用。

设置了 Resize width toResize height to 后,Upscale by 就不生效了。

高分迭代步数 Hires steps

Hires steps 是高分迭代步数,默认值是0,0的意思是使用文生图设置的迭代步数。

如果你重新设置这个值,它生成的画质就会有所不同,数值越高出来的图片精细度就越高。但数值也不是设置得越高越好,比如某些图片设置了60,出来的效果和你设置30是差别不大的。但数值越高出图速度也就越慢。是有边际效应的。

重绘幅度 Denoising strength

Denoising strength 重绘幅度,这个值会影响出图效果。数值远大,出来的图片和原图的差距就越大。

如果不想改变原图的效果这个数值可以设置在0.5以下。但 Denoising strength
的值最终设置多少合适,还是要看你使用了什么底模,有时候设置得太小出来的效果也会很奇怪,画面四周的像素可能会出现很模糊的情况。例如下图是将该值设置成0.3的效果。

06.png

可以看到这个图片的质量并不是很好,脸部细节确实更清晰了,但衣服和背景都糊了。

具体还是要看你生成的图片风格再做参数的微调。

高分模型 Checkpoint

07.png

最后还可以通过选择不同的模型、不同的模型采样算法、正反向提示词对原图进行修改。这意味着你可以基于原图的基础上进行调整。

但默认是没有上图这些选项的,需要在 设置里手动开启 Hires fix: show hires checkpoint and sampler selectionHires fix: show hires prompt and negative prompt,然后保存并重启UI。

08.png

比如我想将上图人物的头发改成粉色,那么我在正向提示词里输入 pink hair ,生成的人物头发就出现一丝粉色。

09.png

注意,是在Hires. fix 的正向提示词输入框里输入提示词,而不是在原来底模下方的输入框输入!!!

10.png

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

在这里插入图片描述

<think>嗯,用户想了解Stable Diffusion文生的技巧。我需要先回忆一下相关的知识,确保信息准确。首先,Stable Diffusion是一种基于深度学习的文本到像生成模型,对吧?它通过扩散过程逐步去噪生成像。用户可能已经知道基本概念,但需要具体的技巧来提升生成效果。 接下来,得考虑用户的使用场景。可能是设计师、艺术家,或者普通用户想生成高质量片。他们可能遇到问题,比如生成的片不符合预期,细节不够,或者风格不统一。需要针对这些常见问题提供解决方法。 用户的需求是技巧,所以应该分步骤,结构清晰。可能需要包括提示词优化、参数调整、模型选择等方面。还要注意使用中文,避免专业术语过多,必要时解释术语。 第一个技巧可能是提示词设计,详细和具体的关键词。比如使用逗号分隔,组合不同元素。还有负面提示词的应用,排除不需要的内容。这部分很重要,因为提示词直接影响生成结果。 第二个可能是参数调整,比如采样步骤、CFG值、种子数。需要解释每个参数的作用和调整建议。比如CFG值过高可能导致过饱和,过低则偏离文本描述。 第三是模型和LoRA的使用,不同的预训练模型影响风格,LoRA可以微调特定特征。用户可能不知道这些资源,需要举例说明,比如现实风格或动漫风格的模型。 第四是迭代优化,可能需要多次生成,调整提示词和参数,或者使用后期处理工具。用户可能希望一次成功,但实际需要多次尝试。 第五是控制生成细节,使用附加控制网络,如边缘检测或深度。这部分可能对高级用户更有用,但简单提及可以帮他们了解可能性。 最后,注意事项,比如版权和计算资源。用户可能忽略这些,需要提醒。 需要检查结构是否清晰,分点列出,每个技巧有解释和例子。使用Markdown格式,但用户要求避免使用,所以用文字描述。确保LaTeX公式正确,但问题中可能不需要数学公式,不过系统指令里提到,如果有变量或方程的话要处理,但这里可能不涉及,所以可能不需要。 还要注意使用中文,保持口语化,避免生硬。可能需要举例说明,比如提示词组合,负面词的应用,参数设置的具体数值建议。 总结下来,组织成几个主要部分,每个部分有子点,逐步引导用户优化生成结果。确保信息准确,比如CFG值的范围,采样步骤的影响,这些都是关键点。最后提醒伦理和法律问题,确保回答全面可靠。</think>以下为Stable Diffusion文生的进阶技巧总结,采用分步式框架帮助您提升生成效果: 一、**提示词工程(Prompt Engineering)** 1. **关键词组合术** - 采用「主体+环境+风格+细节+画质」结构,例如: ```宇航员(主体) 站在发光水晶森林中(环境) 赛博朋克插画风格(风格) 8k细节(细节) Unreal Engine渲染(画质)``` - 使用权重符号`(word:1.5)`调节重点,如`(银河:1.3)背景` 2. **负面提示词应用** ```text 低分辨率, 模糊, 畸形手指, 比例失调, 水印, 文字 ``` 可叠加艺术风格负面词,如`避免印象派笔触`等 二、**参数调优指南** 1. **采样器选择** - 写实类推荐:DDIM/DPM++ 2M Karras - 艺术类推荐:Euler a/Heun - 试验步数范围:20-50步(过低导致细节缺失,过高可能过拟合) 2. **CFG Scale调节** - 常规范围:7-12 - 高创意需求:5-7(增强模型自由度) - 精准控制:12-15(需配合高质量提示词) 三、**模型协同策略** 1. **基础模型选择** - 真实系:Realistic Vision/Protogen - 动漫系:Waifu Diffusion/Anything V5 - 实验性:SDXL 1.0(需更高显存) 2. **LoRA微调技巧** - 权重叠加公式:`<lora:filename:0.8>` - 组合使用多个LoRA时,总权重建议≤1.5 四、**控制网络进阶** 1. **深度控制** ```text 通过Depth-to-Image模块实现: 1. 输入草或3D场景 2. 设置深度阈值0.3-0.7 3. 与提示词联合调节空间层次 ``` 2. **色彩约束** - 使用调色板插件限定主色 - HEX代码控制:`#FF5733作为主色调` 五、**迭代优化流程** 1. 首轮生成使用512x512分辨率测试构 2. 通过img2img进行局部重绘(遮罩笔刷调节) 3. 最终输出采用Hires.fix提升至1024x1024+ - 推荐超分模型:SwinIR/ESRGAN 六、**特殊场景处理** 1. **人物生成要点** - 添加`完美解剖结构`类提示词 - 使用ADetailer插件自动修复面部 2. **多主体控制** ```text 采用组合语法: [猫|狗]在草地上,使用BREAK分隔 配合Regional Prompter分区控制 ``` 注意事项: - 显存不足时启用`--medvram`参数 - 批量生成建议使用X/Y/Z表对比参数 - 商业用途需确认模型授权协议 通过上述技巧的组合运用,可显著提升像质量与控制精度。建议从基础参数开始逐步实验,建立个人工作流模板。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值