推荐系统是互联网时代的一项关键技术,它通过分析用户的兴趣和行为,为用户推荐个性化的内容和产品,从而提高用户的满意度和参与度。随着人工智能技术的迅速发展,特别是深度学习的广泛应用,推荐系统迎来了新的发展机遇。深度学习以其强大的特征提取和非线性建模能力,在推荐系统中扮演着越来越重要的角色。
传统推荐系统
毫不奇怪,媒体、零售、工作列表、教育、房地产和旅游公司已经在使用深度学习。它带来了一个杀手级的功能,用于预测评分,定义篮子中的以下项目,并提供个性化的客户体验。
举个例子,网飞上80%的内容和YouTube上60%的视频来自推荐.
首先,在深入复杂的基于深度学习的系统之前,了解传统的推荐系统是如何工作的。
传统的推荐系统(RSs)包括基于内容和协同过滤(CF)系统,它们的推荐基于历史交互和用户/项目属性。基于内容的推荐主要基于用户的项目和个人资料特征,而CF则寻求类似受众的偏好。
此外,CF方法分为基于记忆的(使用最近邻分类方法)和基于模型的(包括机器学习和数据挖掘技术)。此外,混合方法收获了基于内容和协作过滤方法的收获。
同时,这些系统也有其局限性。例如,冷启动问题对于仍然很少进行系统交互的新用户来说是一个不相关的推荐问题。同样,一个人可以面对数据稀疏问题。想想亚马逊上的数百万件商品,以及每个典型用户的少量实际商品-用户交互。
基于深度学习的推荐系统:它实际上是如何工作的?
一般