如果你真心想要入门大型语言模型(LLM),这篇指南将是一个很好的起点。但请记住,深入学习并精通这一领域,最终还是要靠你的不断学习和实践。
基本要求
首先,确保你具备以下基础:
-
开发语言:Python 是最常用的语言,而 C/C++ 也在性能要求较高时使用。
-
开发框架和工具库:熟悉如 Numpy、Pandas、Matplotlib 和 Seaborn、Scikit-learn、Pytorch、Tensorflow、Keras 和 Onnx 等工具,这些都是进行数据科学和机器学习项目的重要工具。
-
数学知识:掌握线性代数、微积分、概率论及凸优化等基本数学知识,是进行算法开发和模型训练的基础。
数学核心内容
-
线性代数:
-
理解向量、矩阵、特征值和特征向量。
-
熟练掌握矩阵乘法、行列式计算及特征值方程 Av=λv, 其中 A是矩阵,v是特征向量,入是特征值。
-
高数:
-
掌握微分和积分基础,包括极限、导数和积分的定义及计算。
-
理解基本的微积分定理,如积分和微分的关系。
-
概率:
-
熟悉概率公理、条件概率、贝叶斯定理。
-
理解随机变量、概率分布等基本概念。
-
凸优化:
-
了解凸集、凸函数的定义,以及梯度下降和拉格朗日乘数法。
-
掌握梯度下降的基本更新规则 xn+1=xn_−_α_∇_f(xn),其中 α 是学习率。
基本开发框架和工具库
-
Numpy:
-
用途:进行高效的数值计算。它提供了一个强大的N维数组对象和广泛的函数库,用于执行数组操作。
-
重要性:Numpy是几乎所有高级数据分析和机器学习库的底层依赖,包括Pandas和Tensorflow。
-
Pandas:
-
用途:数据处理和分析。Pandas提供了易于使用的数据结构和数据分析工具,特别是对于表格数据非常有效。
-
重要性:在数据预处理阶段,Pandas是不可或缺的,用于数据清洗、转换和数据探索。
-
Matplotlib and Seaborn:
-
Matplotlib:用于创建静态,动态,交互式的图形和数据可视化。
-
Seaborn:基于Matplotlib,提供了一种高级接口,更适合制作复杂的统计图表。
-
重要性:这些库帮助在模型训练前后对数据和结果进行可视化,从而更好地理解数据特征和模型表现。
-
Scikit-learn:
-
用途:包含广泛的简单和有效的工具用于数据挖掘和数据分析。这是一个为跨越数据挖掘和机器学习提供支持的库。
-
重要性:用于快速实现常见的算法,它的设计非常适合作为算法的快速原型开发工具。
-
Tensorflow/Keras:
-
Tensorflow:一个开源的软件库,用于进行高性能数值计算,通过数据流图提供了复杂的计算支持。
-
Keras:作为Tensorflow的一个高级接口,Keras使得创建和测试深度学习模型变得更简单。
-
重要性:这些框架用于构建和训练神经网络,特别是在大规模和复杂的网络结构中显示出其强大功能。
-
PyTorch:
-
用途:与Tensorflow类似,PyTorch提供了强大的GPU加速的张量计算以及构建深度学习网络的方便接口。
-
重要性:PyTorch特别在研究领域受到欢迎,由于其简单性和灵活性,使得实验和原型开发更为直观。
Transformer基础
做为 LLM 的基础模型,你要想入门,理解Transformer模型是入门LLM的关键!而 Transformer 的基本图像就是下面这样的:
Transformer的结构包括:
-
Attention机制:帮助模型在处理输入的不同部分时分配不同的重视程度。
-
多头注意力(Multi-head attention):允许模型在多个子空间并行处理信息。
推荐自己手写一个 Transformer 模型,至少要写一个 Attention 的结构。还要看懂下面这个图。你就能体会到一个至简的模型是怎么遵循 Scaling Law的,AGI 可能就在这个简单的重复与变大中了!
代码示例
以下是一个使用Python及其库来实现基础神经网络的例子,该示例覆盖了数据加载、模型定义、训练和测试的基本步骤,但使用的是更直观的Keras库,这是TensorFlow的高级接口。此示例使用了MNIST手写数字数据集,是机器学习中常用的入门级数据集。
简单的大模型编程示例
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
# 数据加载
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 数据预处理
train_images = train_images.reshape((60000, 28, 28, 1)).astype(‘float32’) / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype(‘float32’) / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
# 模型定义
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation=‘relu’, input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation=‘relu’))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation=‘relu’))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation=‘relu’))
model.add(layers.Dense(10, activation=‘softmax’))
# 编译模型
model.compile(optimizer=‘adam’,
loss='categorical\_crossentropy',
metrics=\['accuracy'\])
# 模型训练
model.fit(train_images, train_labels, epochs=5, batch_size=64)
# 模型测试
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Test accuracy: {test_acc*100:.2f}%, Test loss: {test_loss:.2f}")
注意是每一行
推荐资源
1. deeplearning.ai
-
特点: 系统的深度学习课程,包括专注于LLMs的内容。
-
链接: deeplearning.ai (https://www.deeplearning.ai/)
2. Datawhale
-
特点: 免费的数据科学和AI课程,强调实践和协作学习。
-
链接: Datawhale(https://datawhale.club/home)
通过结合基础学习、实践应用和不断探索最新研究,你将能够有效地掌握大型语言模型的核心技术和应用。
深入学习大语言模型
掌握大型语言模型(LLM)不仅仅是学习基础知识;随着技术快速进化,维持行业竞争力要求深入理解并应用高级技术。以下是针对不同技术阶段的详细介绍,这些技术从简单到复杂、从成本效率到高成本实施不等,每种技术都有其独特的应用场景和实践价值。
定义与应用:
Prompt Engineering 涉及为大型语言模型设计有效的输入(Prompts),以引导模型生成所需的输出。这个过程不仅需要精确表达问题或需求,而且要格式化输出以适应特定应用。
实施细节:
-
指令角色:定义模型应扮演的角色,如助手、顾问等。
-
精确表达:使用清晰、无歧义的语言来提高响应的相关性和准确性。
-
输出格式化:指定输出的结构,比如列表、段落或特定格式的数据。
实际应用:
通过迭代试验确定最有效的Prompt,实验可能包括不同的语言风格、结构变化及不同的细节级别,以达到最佳性能。
定义与功能:
RAG 通过结合检索器模型和生成器模型来提高回答的精确度和相关性。特别是在处理需要广泛背景知识的复杂查询时,RAG能通过检索相关信息并整合进生成过程中,极大地增强模型的输出质量。
关键组件:
-
检索器:负责从一个大规模的数据集中找到与输入Prompt相关的内容。
-
生成器:使用检索到的信息来生成连贯、准确的回答。
技术实现:
整合检索和生成过程,例如使用Elasticsearch作为检索后端,Transformer模型作为生成器,通过LangChain等工具桥接两者。
优化策略:
在特定任务或数据集上调整已经预训练的模型参数,这一过程叫做Fine-Tuning。通过这种方式,可以使通用模型更好地适应特定应用,提高其效能和准确性。
方法论:
-
数据准备:根据任务需求准备或标注数据。
-
微调过程:在特定数据集上继续训练模型,通常使用较低的学习率以避免过拟合。
开发自定义模型:
当预训练的模型不能满足特定需求时,可以从零开始训练自定义的大型语言模型。这需要大量的数据和计算资源,但提供了最高级别的自由度和定制潜力。
实施考量:
-
数据收集:构建覆盖广泛领域的大型数据集。
-
模型设计:设计适应具体任务的模型架构。
-
训练策略:配置高性能计算资源,如使用GPU集群进行模型训练。
高效部署:
将训练好的模型部署到生产环境中,需要优化模型以减少资源消耗和提高响应速度,这包括模型量化、修剪和蒸馏等策略。
优化技术:
-
量化:减少模型使用的数据位数来降低内存需求和加速计算。
-
修剪:去除权重中的冗余或不重要的部分来减小模型大小。
-
蒸馏:训练一个小型模型来模仿大型模型的行为,以减少部署成本。
心理调整与学习策略调整
-
聚焦核心技术:
-
现象: AI信息海量且复杂,难以把握核心。
-
策略: 以大型模型如GPT为中心,构建框架思维,过滤并深入理解主导技术,这些技术形成了AI领域最广泛的共识和应用基础。
-
实例: 如学习Transformer架构,关注其在不同应用(如NLP,图像处理)中的变体和优化。
-
简化学习过程:
-
现象: 初学者面对的学习曲线可能显得陡峭。
-
策略: 通过实操(如编写简单的GPT使用案例)和系统化阅读(例如deeplearning.ai教程),快速掌握基础知识和应用。
-
实例: 在Colab上运行一个小型GPT模型,实现一个简单的聊天机器人。
-
优化日常使用习惯:
-
现象: 日常接触大量短期信息,如行业新闻或技术热点。
-
策略: 专注于长期技术累积和深度应用,减少对流行但非核心技术(如短期内高层人事变动)的关注。
-
实例: 而不是追踪OpenAI的高层变动,应更关注如何GPT技术的迭代对行业的长远影响。
通过上述策略和资源,你将能够高效地入门并精通大型语言模型开发,打下坚实的职业和技术基础。
如何学习AGI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
👉AGI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉AGI大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
👉AGI大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取