ppmandata.cn借鉴Compustat、WRDS等国际知名数据库及FT50期刊专业标准,打造中国特色经济管理社会科学研究型数据库。涵盖上市公司、省份、地级市、专精特新等研究对象,涵盖经济、法律、金融、政策、科技、文化、健康、环保、人口等各类热点数据。顶刊标准数据,好数据,助力发顶刊!
1899
中国人口高龄化系数(2000,2010,2020)
数据简介
中国人口高龄化系数数据集,该数据包含在2000,2010,2020三次人口普查的全国各区县65岁以上人口数,80岁以上人口数,以及通过二者的比值计算得出的全国各区县人口高龄化系数,其计算公式为:
将各区县65岁以上人口数,80岁以上人口数以及高龄化系数整理成矩阵面板数据,方便大家研究使用
人口高龄化系数数据集能够提供各地区老年人口比例及结构变动的详细信息,有助于分析社会老龄化程度及其对经济、社会资源分配的影响。可应用于公共政策领域,如优化养老服务体系、调整医疗资源配置和制定社会保障措施;也可用于学术研究,如探究老龄化与劳动力供给、消费模式转变或代际福利平衡的关系。此外,该数据集还能为企业和投资者提供参考,辅助银发经济产业布局、适老化产品开发及长期护理保险等领域的战略规划,同时助力政府前瞻性应对人口结构转型带来的社会挑战。
数据来源
由数据皮皮侠团队人工整理,全部内容真实有效。
数据范围
中国各区县
时间跨度
2000年,2010年,2020年
数据格式
数据格式为Excel形式
数据指标
地区 | 省份 | 城市 | 年份 |
65岁以上人口数 | 80岁以上人口数 | 高龄化系数 |
数据展示
相关研究
现有研究围绕城市老龄化指数的测度框架、影响因素与政策效应形成三大核心脉络:
(1)测度框架设计研究:聚焦老龄化指数的多维构建与区域适配性。国家信息中心(2024)从政策支持、财富储备、服务体系、社会环境及银发经济五个维度构建包含53项指标的评价体系,证实城市能力指数与经济发展水平正相关,并识别青岛、北京等城市在服务体系建设中的示范效应。刘文等(2020)借鉴欧盟积极老龄化指数框架,结合AHP-DEA方法构建涵盖就业、社会参与、健康保障等23项指标的复合指数,发现中国区域老龄化水平呈现“东高西低”特征,城乡差距随年龄增长而扩大。姜广省团队(2023)进一步将发展、和谐、共享维度纳入测度框架,提出需关注高龄女性健康保障与农村养老资源整合。
(2)影响因素与异质性研究:解析人口流动、经济结构与政策干预的作用路径。杨成钢(2024)基于长三角数据分析发现,青年人口迁移是老龄化空间分化的核心动因,如合肥因产业集聚吸引年轻劳动力使其常住老龄化率低于户籍口径11.8%。汪天怡等(2023)对四川省924名老年人的实证研究表明,社区活动设施覆盖率与心理健康服务可及性可提升积极老龄化指数17.5%,而低教育水平与农村居住构成显著抑制因素9。国家信息中心(2024)揭示直辖市通过长期护理保险与跨省医疗结算等制度创新,使服务体系指数增速较地级市高3.2个百分点。
(3)政策效应评估研究:量化制度创新对老龄化治理的差异化影响。张宇贤团队(2024)通过多期DID模型验证“智慧养老试点政策”可使城市养老服务供需匹配度提升12.7%,但财富储备与银发经济指数存在政策响应滞后性。南通案例表明,早期计划生育政策与人口外流导致其老龄化率达30.1%,需通过战略性新兴产业培育缓解劳动力短缺。宋肖肖等(2025)发现数字政务普及通过降低社保管理成本,可使老龄化财政压力指数改善0.38个标准差,但政策效果存在东部地区边际收益递减现象。
未来研究价值
参考文献
[1]张凤,唐业清,徐洋,等.中国县域人口高龄化时空演化特征及影响因素[J/OL].地理科学,1-11[2025-04-07]
声明:本数据由数据皮皮侠团队整理,仅用于学术研究