在生成式AI席卷各行各业的今天,越来越多的企业都在思考一个问题:大模型,究竟能为企业经营带来什么样的实质性价值?而AI产品经理,正站在这场产业升级的“中枢位置”——你不仅要懂模型、懂业务,还得有能力用一张“看得懂、讲得通、落得下”的架构图,把技术蓝图转化为企业经营的实际方案。
很多AI产品经理在面对大模型时会陷入“只谈能力,不讲落地”或者“只看应用,不知底层”的误区。如何让一张产品架构图,既展现AI能力的全貌,又紧扣企业经营的真实场景?本文将围绕这个问题,从AI能力体系、企业职能渗透、核心场景构建,再到关键产品决策,手把手带你拆解一张“真正能用于企业落地”的大模型产品架构图,帮助你构建出既有逻辑支撑又具落地能力的AI产品设计思维。无论你是AI产品新手,还是深耕行业多年的专家,这篇文章都能为你提供一套系统清晰、值得借鉴的方法论。
一、为什么要画这张产品架构图?明确目标,是产品经理的第一步
画图不是为了“好看”,而是为了解决问题:
-
企业管理者看图要能快速理解大模型的“价值落点”;
-
技术研发看图要知道关键能力在哪、如何衔接;
-
业务部门看图要清楚自己能用哪些 AI 功能、怎么用;
-
产品团队看图要用它作为路线图、评审标准和迭代依据。
简而言之,这张图产品架构图就是连接大模型能力与企业实际经营之间的桥梁,是推动 AI 项目落地的“总蓝图”。
二、绘图前的准备:不是“想画什么画什么”,而是“系统规划、按图建构”
在真正落笔之前,AI 产品经理要完成三件事:
1. 梳理企业业务职能
首先,你要搞清楚企业都有哪些关键职能线,常见的包括:
-
营销/客服
-
OA(办公自动化)
-
财务管理
-
人力资源
-
研发设计
-
供应链与运营
每一条职能线背后都有大量可被大模型赋能的场景,要结合实际业务运作流程进行梳理,而不是照搬行业模板。
2. 归纳“共性场景”
虽然职能各不相同,但很多 AI 赋能的场景是共通的,比如:
-
协同办公(信息流转、自动审批、会议纪要)
-
内容生成(文案、方案、总结、PPT)
-
数据分析(预测、报表、监控)
-
知识管理(文档查询、内部搜索、智能问答)
这类“横向场景”正是打通不同部门之间 AI 应用的连接点。
3. 明确大模型的底层能力
不是所有“智能”都是“大模型”驱动的,作为AI产品经理,你要分得清楚:
-
哪些场景是靠语言生成(NLG)来实现的?
-
哪些依赖知识检索与图谱?
-
哪些涉及多轮推理、复杂判断?
-
哪些是需要与其他系统集成、自动执行任务?
底层能力定清楚,才能设计好上层结构。
三、架构图的整体结构:三层五维、纵横清晰
我们最终的架构图建议分为 三大层级,从上到下分别是:
-
职能渗透层:展示大模型如何深入企业六大职能
-
场景聚合层:聚焦 AI 应用的通用高频场景
-
能力支撑层:展示大模型的底层核心能力
整体结构如下:
四、职能渗透层:让 AI 真正落到业务单元中
这一层是业务视角最关心的,也是产品经理最容易犯错的地方。不是简单写“AI+财务”,而是要列清楚每条线有哪些具体功能,AI 能解决哪些痛点。
职能部门 | 可赋能的典型应用(AI 功能点) | 成熟度 |
---|---|---|
营销/客服 | 话术生成、广告文案生成、客服机器人、客户情绪识别、舆情监测 | ★★★★☆ |
OA系统 | 自动会议纪要、流程审批建议、日报生成、政策解读、日程管理 | ★★★★☆ |
财务 | 报表自动生成、费用分类与核查、税务知识问答、发票审核、预算预测 | ★★★☆☆ |
HR | 简历筛选、入职问答、员工画像、培训内容生成、绩效建议、离职风险预警 | ★★★★☆ |
研发 | 代码生成与补全、需求文档转代码、自动化测试脚本生成、产品文档自动编写 | ★★★★★ |
供应链与运营 | 采购预测、库存调度建议、物流监控、异常预警、合规检查、智能报表 | ★★★☆☆ |
建议使用图标+进度条或星级表示成熟度,也可标注“试点中 / 已落地 / 待规划”。
五、场景聚合层:打通跨职能的高频应用场景
我们把所有业务中的“共性场景”归纳为四大类,方便统一设计和复用:
1. 协同办公场景
AI 能在工作流中提供即时支持,比如:
-
智能会议纪要(自动总结发言要点)
-
工作日报周报生成(根据系统数据自动撰写)
-
审批建议推荐(根据历史案例自动判断合理性)
2. 内容生成场景
内容爆炸时代,AI 是最强“文案助手”:
-
商务邮件、广告文案自动撰写
-
内部报告、培训材料生成
-
技术文档、产品说明书自动提取生成
3. 数据分析场景
结合 BI 与 NLP,AI 可支持更自然的数据交互:
-
“用自然语言提问”获取图表和趋势分析
-
财务分析、销售预测、客户行为建模
-
异常数据预警
4. 知识管理场景
通过企业知识库 + 向量数据库,打造“企业的ChatGPT”:
-
搜索公司政策、流程、产品规范
-
新员工提问机器人
-
法务或财税智能问答助手
这些场景可用“横向泳道图”串联多个职能,体现“一个能力,赋能多部门”。
六、能力支撑层:四大底座决定你能做多深、跑多快
最底层是 AI 产品经理必须与技术深度协作的一层,也是大模型真正的“动力来源”:
能力模块 | 核心作用与示例 | 技术代表或工具 |
---|---|---|
语言理解与生成 | 问答、写作、润色、总结、改写 | GPT、Claude、Gemini |
知识图谱与检索 | 向量检索、知识库构建、内部文档问答 | Faiss、Milvus、LangChain |
推理与决策 | 多轮推理、流程分支判断、数据驱动建议、复杂任务规划 | CoT、Function Calling |
多模态与自动化 | OCR识别、语音转写、任务执行、RPA接口集成 | UiPath、OpenAI Functions |
每一个能力模块下,建议列出典型接口 + 是否已集成 / 计划集成,方便技术同事对接。
七、让图“活起来”:加上流程与反馈回路,打造“自驱动”系统
最后,为了让这张图不仅是“展示架构”,更是“驱动引擎”,建议加上一个“从需求到反馈”的闭环:
这样形成一个不断循环、自我进化的 AI 产品系统,真正做到业务增长与模型能力协同演进。
八、总结
在这个算法重构商业的时代,一张AI产品架构图就是AI产品经理的战略罗盘。它既是我们解构企业经营的X光片——穿透组织迷雾看清核心场景;也是我们整合技术能力的聚变场——让大模型能力精准滴灌到业务毛细血管。当我们用架构思维拆解企业经营,会发现:真正的AI赋能不是技术堆砌,而是将语言模型转化为商业语言的转译艺术。这要求我们既要有CEO的全局视角,在关键业务场景中找准价值锚点;又要具备CTO的技术敏锐度,在模型选型与工程化落地间架起桥梁;更要怀揣产品人的匠心,把抽象算法打磨成可感知的业务价值。点击收藏这篇指南,开启属于你的AI赋能之旅——下一次架构评审会上,让我们见证你用一张图讲清AI赋能的魔法!
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取