最大流算法模板 挑战程序设计竞赛


const int MAX_V=1e6;
struct edge{
    int to,cap,rev;     //终点,容量,反向边
};

vector<edge> G[MAX_V];  //图的邻接表表示
int level[MAX_V];       //顶点到原点的距离标号
int iter[MAX_V];        //当前弧,在其之前的边已经没有用了


//增加一条从from到to的容量为cap的边
void add_edge(int from,int to,int cap){

    G[from].push_back((edge){to,cap,G[to].size()});

    G[to].push_back((edge){from,0,G[from].size()-1});

}

//通过BFS计算从原点出发的距离标号
void bfs(int s){
    memset(level,-1,sizeof(level));
    queue<int > que;
    level[s]=0;
    que.push(s);
    while(!que.empty()){
        int v=que.front(); que.pop();
        for(int i=0;i<G[v].size();i++){
            edge& e=G[v][i];
            if(e.cap>0&&level[e.to]<0){
                level[e.to]=level[v]+1;
                que.push(e.to);
            }
        }
    }
}


//通过DFS寻找增广路
int dfs(int v,int t,int f){
    if(v==t) return f;
    for(int& i=iter[v]; i<G[v].size(); i++){
        edge& e=G[v][i];
        if(e.cap>0 && level[v]<level[e.to]){
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0){
                e.cap -= d;
                G[e.to][e.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
}


//求解从s到t的最大流
int max_flow(int s,int t){
    int flow=0;
    for(;;){
        bfs(s);
        if(level[t]<0) return flow;
        memset(iter,0,sizeof(iter));
        int f;
        while((f=dfs(s,t,INF))>0){
            flow+=f;
        }
    }
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值