Anylabeling工具标注及json数据处理

1.在anaconda里创建标注环境,并open Terminal

输入指令下载anylabeling工具,

下载完后打开anylabeling,界面如图:

2.选择路径

2.1 左上角文件夹图标 打开路径,找到自己数据集所在文件夹。

2.2 左下位置有一个 粉色大脑状的图标,这里可以载入模型辅助打标签。

这里的模型可以直接选择下载(需要科学上网),也可以载入自己的权重。

2.3 模型选择完点右边的 + point 即可点选目标,倘若超过边界可以选 - point 消除掉多余内容。

一般来说如果自己所需目标边界清晰的话借助ai模型可以避免很多麻烦,当遇到边界模糊的也可以点击左边六边形图标选择人工标注。

如图示,借助模型鼠标一键即可选中dog边界,倘若人工标注至少要鼠标点击十几次。标记一个目标后F打标注;一次标注后后面的重复目标不需要输入,直接点选就可以。

这里可以按A返回上一个,D进到下一张,快捷打标。

可以在路径下自动生成json文件:

然后就可以根据需要处理数据集啦!

3.数据处理

由于都是生成的json文件,我试想过去用labelme制作数据集时的png转换脚本或许在这里也可以用,于是没多想直接ctrl+v过来,完全可用。

3.1路径设置before文件夹即原图+json文件路径,jpgs_path原图路径;pngs_path即生成图路径;

3.2自己设置好classes:背景+自己目标的名称

注这里需下载labelme帮助处理数据。

import base64
import json
import os
import os.path as osp

import numpy as np
import PIL.Image
from labelme import utils

if __name__ == '__main__':
    jpgs_path   = "dataset2/JPEGImages"
    pngs_path   = "dataset2/SegmentationClass"
    
    classes     = ["_background_", "dog"]
    
    count = os.listdir("./dataset2/before/")
    for i in range(0, len(count)):
        path = os.path.join("./dataset2/before", count[i])

        if os.path.isfile(path) and path.endswith('json'):
            data = json.load(open(path))
            
            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')

            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = {'_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value
            
            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))
            
            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
            
                
            PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg'))

            new = np.zeros([np.shape(img)[0],np.shape(img)[1]])
            for name in label_names:
                index_json = label_names.index(name)
                index_all = classes.index(name)
                new = new + index_all*(np.array(lbl) == index_json)

            utils.lblsave(osp.join(pngs_path, count[i].split(".")[0]+'.png'), new)
            print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')

生成png图以及叠加后的Mask图如下所示:

当然也可以根据自己的需要做相应的数据处理;

Anylabeling作为支持ai模型的标注工具为标注工作减轻了不少负担~

### AnyLabeling 自动标注 AM 使用教程 #### 配置环境 为了使用 x-anylabeling 的自动标注功能,需先安装依赖项并设置开发环境。确保 Python 版本不低于 3.7,并通过 pip 安装必要的库[^1]。 ```bash pip install anylabeling ``` 对于特定于 AM (MobileSAM) 模型的支持,还需额外下载预训练模型文件以及相应插件来扩展基础框架的功能。 #### 初始化项目结构 创建一个新的工作目录用于保存数据集、配置文件和输出结果: ```plaintext project/ ├── config.yaml # 主要参数设定 └── data/ # 存放待处理图片 └── images/ ``` `config.yaml` 文件定义了运行时所需的各种选项,例如输入路径、输出格式等。下面是一个简单的例子说明如何指定基本属性: ```yaml input_dir: "./data/images" output_format: "coco" # 或其他支持的格式如 'yolo', 'pascal_voc' model_name: "mobile_sam" confidence_threshold: 0.5 batch_size: 8 device: "cuda" # 如果 GPU 可用则设为 cuda 否则 cpu ``` #### 执行批量化自动标记流程 准备好上述资源之后就可以调用命令行接口启动批量处理任务了。此操作会读取给定文件夹内的所有图像,并应用 MobileSAM 来预测对象边界框及类别标签。 ```bash anylabeling batch_process --config ./project/config.yaml ``` 该指令执行完毕后会在同一级目录下自动生成 `annotations.json` 文件,其中包含了按照所选格式整理好的标注信息。 #### 常见问题解答 - **Q:** 当遇到内存不足错误怎么办? A: 调整批次大小 (`batch_size`) 参数至较小数值可以有效缓解这一状况;另外考虑切换设备到 CPU 上完成计算如果显存不够的话. - **Q:** 如何提高识别精度? A: 尝试调整置信度阈值 (`confidence_threshold`) ,降低其值可以让更多潜在目标被检测出来,但同时也可能引入误报情况增加人工审核成本.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值