[YOLOv8] - 使用AnyLabeling对数据集进行标注(含安装和使用技巧)

什么是AnyLabeling?

anylabeling · PyPI

Effortless data labeling with AI support from YOLO and Segment Anything

AnyLabeling = LabelImg + Labelme + Improved UI + Auto-labeling

项目在保持持续更新, 

https://github.com/vietanhdev/anylabeling

如何Windows下安装AnyLabeling?

创建python虚拟环境

通过miniconda创建名为anylabeling_py310的python虚拟环境:

conda create -n anylabeling_py310 python=3.10
conda activate anylabeling_py310

安装AnyLabeling

pip install anylabeling 
# or pip install anylabeling-gpu for GPU support

启动AnyLabeling

anylabeling

 

如何使用AnyLabeling进行图像标注

 AnyLabeling吸收了LabelImg和LabelMe的优点,并在此基础上进行了优化,它的标注的操作过程和LabelMe保持一致,可以参考 

[YOLOv8] - 使用LabelMe对数据集进行标注(含安装和使用技巧)中的“使用LabelMe来管理标注”章节。

相比LabelImg和LabelMe,AnyLabeling多了哪些新特性

支持中文

 支持使用已有模型进行自动化标注

目前支持Segment  Anything,YOLOv5,YOLOv8模型,你可以使用别人预训练好模型,或者自己训练的模型。

这里展示一下使用YOLOv8n来进行自动化标注:

通过“File->Open Dir”打开存放要标注的图像的目录(我这里直接从coco的test数据集选取了部分图像),选中“YOLOv8n”,这时候会进行模型自动下载,等下载完成。

从右下角的图像列表,选中一张图像,双击打开,点击“Run( i )”按钮进行自动标注:

这个还是很方便的,如果图像中要标注的目标很多,并且存在很多在当前模型已经覆盖了的类别,充分利用之前预训练好的模型,是可以大大的提高标注的效率。

AnyLabeling相比LabelMe,LabelImg界面做了哪些优化

可以说AnyLabeling吸收了所有LabelMe和LabelImg的优点,比如

自动保存标注

把被标注的图像附加到标注信息文件json中

自动使用最后一次标注使用的类别(相当于LabelImg中的设置“Use default label”或者“启动“Single Class Mode”)

增加了是否显示标注十字架

增加了常用快捷键提示 

和LabelMe一样,在用户目录提供了一个可配置文件,可以自定义自己喜欢的快捷键或者颜色

 保持LabelMe一样的命令行格式

可以通过命令行启动AnyLabeling时,使用的图像目录,标签类别,标题保存路径等,

这是我创建的dos bat命令:

D:\my_project\Anaconda3\envs\anylabeling_py310\Scripts\anylabeling.exe D:\YOLOv8Train\anylabeling_datasets\mktk_datasets\cut_640_images --labels D:\YOLOv8Train\anylabeling_datasets\mktk_datasets\cut_640_labels\classes.txt --output D:\YOLOv8Train\anylabeling_datasets\mktk_datasets\cut_640_labels

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法参数义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包数据的表格范围(必须包查找列返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老狼IT工作室

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值