[YOLOv8] - 使用AnyLabeling对数据集进行标注(含安装和使用技巧)

什么是AnyLabeling?

anylabeling · PyPI

Effortless data labeling with AI support from YOLO and Segment Anything

AnyLabeling = LabelImg + Labelme + Improved UI + Auto-labeling

项目在保持持续更新, 

https://github.com/vietanhdev/anylabeling

如何Windows下安装AnyLabeling?

创建python虚拟环境

通过miniconda创建名为anylabeling_py310的python虚拟环境:

conda create -n anylabeling_py310 python=3.10
conda activate anylabeling_py310

安装AnyLabeling

pip install anylabeling 
# or pip install anylabeling-gpu for GPU support

启动AnyLabeling

anylabeling

 

如何使用AnyLabeling进行图像标注

 AnyLabeling吸收了LabelImg和LabelMe的优点,并在此基础上进行了优化,它的标注的操作过程和LabelMe保持一致,可以参考 

[YOLOv8] - 使用LabelMe对数据集进行标注(含安装和使用技巧)中的“使用LabelMe来管理标注”章节。

相比LabelImg和LabelMe,AnyLabeling多了哪些新特性

支持中文

 支持使用已有模型进行自动化标注

目前支持Segment  Anything,YOLOv5,YOLOv8模型,你可以使用别人预训练好模型,或者自己训练的模型。

这里展示一下使用YOLOv8n来进行自动化标注:

通过“File->Open Dir”打开存放要标注的图像的目录(我这里直接从coco的test数据集选取了部分图像),选中“YOLOv8n”,这时候会进行模型自动下载,等下载完成。

从右下角的图像列表,选中一张图像,双击打开,点击“Run( i )”按钮进行自动标注:

这个还是很方便的,如果图像中要标注的目标很多,并且存在很多在当前模型已经覆盖了的类别,充分利用之前预训练好的模型,是可以大大的提高标注的效率。

AnyLabeling相比LabelMe,LabelImg界面做了哪些优化

可以说AnyLabeling吸收了所有LabelMe和LabelImg的优点,比如

自动保存标注

把被标注的图像附加到标注信息文件json中

自动使用最后一次标注使用的类别(相当于LabelImg中的设置“Use default label”或者“启动“Single Class Mode”)

增加了是否显示标注十字架

增加了常用快捷键提示 

和LabelMe一样,在用户目录提供了一个可配置文件,可以自定义自己喜欢的快捷键或者颜色

 保持LabelMe一样的命令行格式

可以通过命令行启动AnyLabeling时,使用的图像目录,标签类别,标题保存路径等,

这是我创建的dos bat命令:

D:\my_project\Anaconda3\envs\anylabeling_py310\Scripts\anylabeling.exe D:\YOLOv8Train\anylabeling_datasets\mktk_datasets\cut_640_images --labels D:\YOLOv8Train\anylabeling_datasets\mktk_datasets\cut_640_labels\classes.txt --output D:\YOLOv8Train\anylabeling_datasets\mktk_datasets\cut_640_labels

### 结合X-AnyLabelingYOLOv8进行目标检测 #### 数据准备阶段 在数据准备过程中,利用X-AnyLabeling工具能够高效地标记图像中的物体。对于希望训练YOLOv8模型来识别特定类型的物品而言,高质量的数据集至关重要。标记工作可以通过手动方式完成,即操作者依据实际需求,在图片上绘制边界框或其他形状以圈定感兴趣的对象,并赋予相应的分类标签[^1]。 #### 自动化辅助功能 值得注意的是,最新版本的X-AnyLabeling不仅限于基本的手工标注流程;它还引入了一系列智能化特性,比如支持YOLOv8旋转目标检测以及内置SAHI工具用于增强小尺寸物体的识别精度。特别是当面对较小或密集分布的目标时,这些高级选项有助于提高最终模型的表现力[^2]。 #### 训练前配置调整 一旦完成了初步的数据收集预处理之后,下一步就是针对所选框架——这里是YOLOv8做必要的参数设定。这通常涉及到指定输入分辨率大小、锚点设置等细节方面的工作。与此同时,如果打算采用迁移学习策略,则需考虑加载预训练权重文件作为起点,从而加速收敛速度并改善泛化能力[^3]。 ```yaml # yolov8.yaml configuration snippet example train: imgsz: 640 # Input image size during training batch_size: 16 # Batch size per GPU/TPU core/CPU epochs: 100 # Number of epochs to train for ``` #### 开始训练过程 准备好一切条件后就可以启动正式的训练环节了。此时应确保环境搭建完毕(如安装好依赖库),并且正确指定了路径指向已整理好的训练集及其对应的验证子集。随着迭代次数增加,损失函数值逐渐减小直至趋于稳定状态,表明网络正在逐步学会区分不同类别的特征模式。 #### 后续优化建议 考虑到实际情况可能存在的偏差因素影响着预测准确性,因此有必要持续监控评估指标变化趋势并对超参做出相应微调。另外,借助可视化手段直观展现中间层激活图谱也有助于深入理解内部机制运作原理,进而指导后续改进措施的选择方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老狼IT工作室

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值