L2-007 家庭房产 (25分) PAT C++

题目描述

给定每个人的家庭成员和其自己名下的房产,请你统计出每个家庭的人口数、人均房产面积及房产套数。

输入格式

输入第一行给出一个正整数N(≤1000),随后N行,每行按下列格式给出一个人的房产:

编号 父 母 k 孩子1 … 孩子k 房产套数 总面积
其中编号是每个人独有的一个4位数的编号;父和母分别是该编号对应的这个人的父母的编号(如果已经过世,则显示-1);k(0≤k≤5)是该人的子女的个数;孩子i是其子女的编号。

输出格式

首先在第一行输出家庭个数(所有有亲属关系的人都属于同一个家庭)。随后按下列格式输出每个家庭的信息:

家庭成员的最小编号 家庭人口数 人均房产套数 人均房产面积
其中人均值要求保留小数点后3位。家庭信息首先按人均面积降序输出,若有并列,则按成员编号的升序输出。

输入样例
10
6666 5551 5552 1 7777 1 100
1234 5678 9012 1 0002 2 300
8888 -1 -1 0 1 1000
2468 0001 0004 1 2222 1 500
7777 6666 -1 0 2 300
3721 -1 -1 1 2333 2 150
9012 -1 -1 3 1236 1235 1234 1 100
1235 5678 9012 0 1 50
2222 1236 2468 2 6661 6662 1 300
2333 -1 3721 3 6661 6662 6663 1 100
输出样例
3
8888 1 1.000 1000.000
0001 15 0.600 100.000
5551 4 0.750 100.000

分析

此题是对并查集的相关考察,同时需要建立一个家庭的结构用于储存家庭中最小号的那个人的id、家庭人数、房屋总套数、房屋总面积。同时需要注意有的人可能只有一个人,没有父母和儿女,需要进行标记。

#include<bits/stdc++.h>
using namespace std;
int n,co;
const int N = 1e4+10;
struct edge{
    int a,b;
}e[N];
bool st[N];
int fa[N],peo[N],avgs[N],avga[N];

int find(int x)
{
    if(fa[x]!=x) fa[x]=find(fa[x]);
    return fa[x];
}

void unionf(int a,int b)
{
	int faa=find(a),fbb=find(b);
	if(faa!=fbb)
	{
		fa[max(faa,fbb)]=min(faa,fbb);     //把id号较小的那个人设定为父亲
		peo[min(faa,fbb)]+=peo[max(faa,fbb)];    //把人数加到较小id的人数那里
		avgs[min(faa,fbb)]+=avgs[max(faa,fbb)];  //把房屋数量加到较小id的人数那里
		avga[min(faa,fbb)]+=avga[max(faa,fbb)];  //把房屋面积加到较小id的人数那里
	}
}
struct family{
	int id,cnt,avgs,avga;
	
	bool operator < (family x)
	{
		if(x.cnt*avga==cnt*x.avga)
		{
			return id<x.id;
		}
		return x.cnt*avga>cnt*x.avga;
	}
};
int main()
{
	for(int i=0;i<N;i++) fa[i]=i,peo[i]=1;
    cin>>n;
    int id,father,mother,k;
    for(int i=0;i<n;i++)
    {
        cin>>id>>father>>mother>>k;
        if(father!=-1) e[co++]={id,father};
        if(mother!=-1) e[co++]={id,mother};
        st[id]=true; //有的人可能只有一个人,需要特殊标记
		int kid;
        for(int j=0;j<k;j++)
        {
            cin>>kid;
            e[co++]={id,kid};
        }
        cin>>avgs[id]>>avga[id];
    }
    for(int i=0;i<co;i++)
    {
        int a=e[i].a,b=e[i].b;
    	st[a]=st[b]=true;
		unionf(a,b);
    }
    vector<family> ans;
    for(int i=0;i<N;i++)
    {
    	if(st[i] && fa[i]==i)       //这个人真实存在并且父亲结点是自己,就加进去
    		ans.push_back({i,peo[i],avgs[i],avga[i]});
	}
	sort(ans.begin(),ans.end());
	cout<<ans.size()<<endl;
	for(auto t:ans) printf("%04d %d %.3lf %.3lf\n",t.id,t.cnt,(double)t.avgs/t.cnt,(double)t.avga/t.cnt);
    return 0;
}
### L2-007 家庭房产 Python 实现方案 对于家庭房产相关的预测问题,可以将其视为一个典型的回归任务。以下是基于深度学习框架 TensorFlow 和 Keras 的实现流程,涵盖了模型结构的设计、正则化策略的应用以及优化方法的选择。 #### 数据预处理 在实际应用中,家庭房产的数据可能包含多个特征(如房屋面积、房间数、地理位置等)。为了提升模型性能,在输入到神经网络之前需对数据进行必要的清洗和标准化: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 假设 data.csv 是家庭房产数据文件 data = pd.read_csv('data.csv') # 特征与标签离 X = data.drop(columns=['price']) # price 列为目标变量 y = data['price'] # 将数据划为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 对特征进行标准化 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) ``` #### 构建模型结构 根据引用中的描述[^1],模型设计应考虑激活函数、权重初始化、批量归一化及正则化等因素。以下是一个简单的多层感知机 (MLP) 结构示例: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, BatchNormalization, Dropout from tensorflow.keras.regularizers import l2 model = Sequential([ Dense(64, activation='relu', kernel_initializer='he_normal', input_shape=(X_train.shape[1],)), BatchNormalization(), Dropout(0.3), Dense(32, activation='relu', kernel_initializer='he_normal', kernel_regularizer=l2(0.001)), BatchNormalization(), Dropout(0.3), Dense(1, activation='linear') # 输出层为单节点线性激活 ]) model.compile(optimizer=tf.optimizers.Adam(), loss='mse', metrics=['mae']) ``` 上述代码中: - 使用 `ReLU` 激活函数并配合 He 初始化方式以缓解梯度消失问题。 - 添加了批量归一化 (`BatchNormalization`) 来加速收敛。 - 应用了 dropout 正则化技术来防止过拟合[^2]。 - 在隐藏层引入 L2 正则化项以进一步控制模型复杂度。 #### 训练过程监控 通过绘制训练过程中损失的变化曲线可以帮助判断是否存在欠拟合或过拟合现象: ```python history = model.fit(X_train_scaled, y_train, validation_data=(X_test_scaled, y_test), epochs=100, batch_size=32, verbose=1) plt.figure(figsize=(8, 5)) plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.legend() plt.xlabel('Epochs') plt.ylabel('Loss') plt.title('Model Training and Validation Loss') plt.show() ``` #### 测试与评估 完成训练后可利用测试集评价最终表现,并计算均方误差(MSE)或其他指标作为衡量标准: ```python test_mse, test_mae = model.evaluate(X_test_scaled, y_test, verbose=0) print(f'Test MSE: {test_mse:.2f}, Test MAE: {test_mae:.2f}') ``` 以上便是针对 **L2-007 家庭房产** 预测的一个完整 Python 解决方案概述。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jay_fearless

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值