1.考点
2.3种常见题型
3.一阶微分方程
高阶线性方程解的结构
4.常系数微分方程
特解形式选择题
特征方程反推微分方程
常系数通解,一般要从特征方程入手
不是常系数,就要先找通解,然后求2次导,把 C 1 C_{1} C1, C 2 C_{2} C2替换掉,解得通解
综合题,求原函数
根据函数方程求 f ( x ) f(x) f(x),从导数定义入手
反函数一阶导,二阶导
若x=x(y)是y=y(x)的反函数:
d
x
d
y
=
1
y
′
\frac{dx}{dy}=\frac{1}{y^{'}}
dydx=y′1
d
2
x
d
y
2
=
−
y
′
′
(
y
′
)
3
\frac{d^{2}x}{dy^{2}}=-\frac{y{''}}{(y^{'})^3}
dy2d2x=−(y′)3y′′
结合反常积分,第二问要从微分方程求出y,而不是通过解出C1,C2来求积分的值
5.应用题
求面积
本题是找到阴影面积=
f
(
x
)
f(x)
f(x)在[0,x]积分-梯形的面积