高等数学强化4:常微分方程

这篇博客深入探讨了微分方程的考点和常见题型,特别是一阶线性方程和高阶线性方程解的结构。讲解了如何通过特征方程求解常系数微分方程,并介绍了非常系数方程的处理方法。同时,文章还涉及了反函数的一阶和二阶导数公式,并结合反常积分讨论了微分方程在求面积和解决物理问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.考点

在这里插入图片描述

2.3种常见题型在这里插入图片描述

3.一阶微分方程

在这里插入图片描述

高阶线性方程解的结构

在这里插入图片描述

4.常系数微分方程

在这里插入图片描述

特解形式选择题

在这里插入图片描述

特征方程反推微分方程

在这里插入图片描述

常系数通解,一般要从特征方程入手

在这里插入图片描述

不是常系数,就要先找通解,然后求2次导,把 C 1 C_{1} C1, C 2 C_{2} C2替换掉,解得通解

在这里插入图片描述

综合题,求原函数

在这里插入图片描述

根据函数方程求 f ( x ) f(x) f(x),从导数定义入手

在这里插入图片描述

反函数一阶导,二阶导
若x=x(y)是y=y(x)的反函数:

d x d y = 1 y ′ \frac{dx}{dy}=\frac{1}{y^{'}} dydx=y1
d 2 x d y 2 = − y ′ ′ ( y ′ ) 3 \frac{d^{2}x}{dy^{2}}=-\frac{y{''}}{(y^{'})^3} dy2d2x=(y)3y
在这里插入图片描述

结合反常积分,第二问要从微分方程求出y,而不是通过解出C1,C2来求积分的值

在这里插入图片描述

5.应用题

求面积

本题是找到阴影面积= f ( x ) f(x) f(x)在[0,x]积分-梯形的面积
在这里插入图片描述

求物理问题

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jay_fearless

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值