常数微分方程

常微分方程

一个包含位置函数以及这个未知函数的导数的方程,就是一个常微分方程。之所以称为“常”,是为了有别于偏微分方程:一个包含未知函数以及这个未知函数的偏导数的方程,例如拉普拉斯方程:
∂ 2 u ∂ 2 x 2 + ∂ 2 u ∂ 2 y 2 + ∂ 2 u ∂ 2 z 2 = 0 (0) \frac{\partial^{2}u}{\partial^{2}x^{2}}+\frac{\partial^{2}u}{\partial^{2}y^{2}}+\frac{\partial^{2}u}{\partial^{2}z^{2}}=0 \tag{0} 2x22u+2y22u+2z22u=0(0)
一般来说,一个联系自变量 x x x 的一元函数 y = y ( x ) y=y(x) y=y(x) 及其导数 y j ( x ) y^{j}(x) yj(x) 的方程(其中导数的最高阶为 n n n):
F ( x , y , y ′ , ⋯   , y ( n ) ) = 0 (1) F(x,y,y',\cdots,y^{(n)})=0\tag{1} F(x,y,y,,y(n))=0(1)
称作一个 n n n 阶常微分方程。通常,能代表常微分方程大多数解的一个包含若干独立常数的解,称为通解,不包含常数的称为特解。可以通过雅可比行列式判断通解的常数是否独立。

初等积分法

通常有几种情况:

  • 变量分离,以及几类可以化为变量分离方程的几类方程
  • 一阶线性微分方程
  • 全微分方程与积分因子
  • 可以降阶的二阶微分方程
变量分离

变量分离是常微分方程中可以用初等方法求解的基本方程之一,例如:
d y d x = f ( x ) ⋅ g ( y ) (2) \frac{dy}{dx}=f(x)\cdot g(y)\tag{2} dxdy=f(x)g(y)(2)
即可以化为右端表成关于 x x x y y y 的方程的乘积,则有:
d y g ( y ) = f ( x ) d x (3) \frac{dy}{g(y)}=f(x)dx\tag{3} g(y)dy=f(x)dx(3)
两边积分得到:
∫ 1 g ( y ) d y = ∫ f ( x ) d x (4) \int \frac{1}{g(y)}dy=\int f(x)dx\tag{4} g(y)1dy=f(x)dx(4)
若原函数可求,设 ∫ g ( y ) d y = G ( y ) + C 1 , ∫ f ( x ) d x = F ( x ) + C 2 \int g(y)dy=G(y)+C_{1},\int f(x)dx=F(x) + C_{2} g(y)dy=G(y)+C1,f(x)dx=F(x)+C2,则:
G ( y ) = F ( x ) + C (5) G(y)=F(x)+C\tag{5} G(y)=F(x)+C(5)
其中, C C C 为任意常数

其他一些可以化为变量分离的方程

(1)形如:
d y d x = f ( a x + b y + c ) , ( a , b , c 为 常 数 ) (6) \frac{dy}{dx}=f(ax+by+c),(a,b,c为常数)\tag{6} dxdy=f(ax+by+c),(a,b,c)(6)
z = a x + b y + c z=ax+by+c z=ax+by+c,则有:
d z d x = a + b d y d x = a + b f ( z ) (7) \frac{dz}{dx}=a+b\frac{dy}{dx}=a+bf(z)\tag{7} dxdz=a+bdxdy=a+bf(z)(7)
此时方程变为关于 z z z 的变量分离方程
(2)形如:
d y d x = f ( x , y ) (8) \frac{dy}{dx}=f(x,y)\tag{8} dxdy=f(x,y)(8)
其中,右端的方程是一个齐次函数,即对于任意 t ≠ 0 t\neq0 t=0,都有:
f ( t x , t y ) = f ( x , y ) (9) f(tx,ty)=f(x,y)\tag{9} f(tx,ty)=f(x,y)(9)
即,函数 f ( x , y ) f(x,y) f(x,y) 可以写成关于 y / x y/x y/x 的函数,这就是一个齐次函数,则有:
y ′ = h ( y x ) (10) y'=h(\frac{y}{x})\tag{10} y=h(xy)(10)
这时这个函数可以转换为关于一个变量 u u u 的函数 h ( u ) h(u) h(u) u = y / x u=y/x u=y/x,则:
y = u x y ′ = u + x u ′ (11) y=ux \\ y'=u+xu' \tag{11} y=uxy=u+xu(11)
则可以得到:
u + x u ′ = h ( u ) (12) u+xu'=h(u)\tag{12} u+xu=h(u)(12)
即:
d u d x = h ( u ) − u x (13) \frac{du}{dx}=\frac{h(u)-u}{x}\tag{13} dxdu=xh(u)u(13)
这时可以通过变量分离法求解得到 u u u,最终得到 y y y 的方程
(3)形如:
d y d x = f ( a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 ) (14) \frac{dy}{dx}=f(\frac{a_{1}x+b_{1}y+c_{1}}{a_{2}x+b_{2}y+c_{2}})\tag{14} dxdy=f(a2x+b2y+c2a1x+b1y+c1)(14)
c 1 = c 2 = 0 c_{1}=c_{2}=0 c1=c2=0 时,右端为齐次函数,可化为变量分离的方程
若至少一个不为零,时:
(1)
Δ = ∣ a 1 b 1 a 2 b 2 ∣ ≠ 0 (15) \Delta= \begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix} \neq0\tag{15} Δ=a1a2b1b2=0(15)
此时联立方程:
{ a 1 x + b 1 y + c 1 = 0 , a 2 x + b 2 y + c 2 = 0 (16) \begin{cases} a_{1}x+b_{1}y+c_{1}=0,\\ a_{2}x+b_{2}y+c_{2}=0 \end{cases} \tag{16} {a1x+b1y+c1=0,a2x+b2y+c2=0(16)
有唯一解,记为 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0),即满足:
c i = − ( a i x 0 + b i y 0 ) , i = 1 , 2 (17) c_{i}=-(a_{i}x_{0}+b_{i}y_{0}),i=1,2\tag{17} ci=(aix0+biy0)i=1,2(17)
则:
a 1 x + b 1 y + c 1 = a 1 ( x − x 0 ) + b 1 ( y − y 0 ) a 2 x + b 2 y + c 2 = a 2 ( x − x 0 ) + b 2 ( y − y 0 ) (18) a_{1}x+b_{1}y+c_{1}=a_{1}(x-x_{0})+b_{1}(y-y_{0})\\ a_{2}x+b_{2}y+c_{2}=a_{2}(x-x_{0})+b_{2}(y-y_{0}) \tag{18} a1x+b1y+c1=a1(xx0)+b1(yy0)a2x+b2y+c2=a2(xx0)+b2(yy0)(18)
u = x − x 0 , v = y − y 0 u=x-x_{0},v=y-y_{0} u=xx0,v=yy0,为新的自变量和未知函数,此时方程为:
d v d u = f ( a 1 u + b 1 v a 2 u + b 2 v ) (19) \frac{dv}{du}=f(\frac{a_{1}u+b_{1}v}{a_{2}u+b_{2}v})\tag{19} dudv=f(a2u+b2va1u+b1v)(19)
即关于 u , v u,v u,v 的齐次方程

(2)
Δ = ∣ a 1 b 1 a 2 b 2 ∣ = 0 (20) \Delta= \begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix} =0\tag{20} Δ=a1a2b1b2=0(20)
a 1 ⋅ b 1 ≠ 0 a_{1}\cdot b_{1}\neq 0 a1b1=0 时,则存在 k k k,使得:
a 1 = k a 2 b 1 = k b 2 (21) a_{1}=ka_{2}\\ b_{1}=kb_{2} \tag{21} a1=ka2b1=kb2(21)
此时令 z = a 1 x + b 1 y z=a_{1}x+b_{1}y z=a1x+b1y,则有:
d z d x = a 1 + b 1 d y d x = a 1 + b 1 f ( z + c 1 k z + c 2 ) . (22) \frac{dz}{dx}=a_{1}+b_{1}\frac{dy}{dx}=a_{1}+b_{1}f(\frac{z+c_{1}}{kz+c_{2}}).\tag{22} dxdz=a1+b1dxdy=a1+b1f(kz+c2z+c1).(22)
显然,这时一个变量分离的方程
a 1 ≠ 0 , b 1 = 0 a_{1}\neq0,b_{1}=0 a1=0,b1=0 时,由 Δ = 0 \Delta=0 Δ=0 可得 b 2 = 0 b_{2} = 0 b2=0。则此时方程为:
y ′ = f ( a 1 x + c 1 a 2 x + c 2 ) (23) y'=f(\frac{a_{1}x+c_{1}}{a_{2}x+c_{2}})\tag{23} y=f(a2x+c2a1x+c1)(23)
即变量分离方程。同理可得 a 1 = 0 , b 1 ≠ 0 a_{1}=0,b_{1}\neq0 a1=0,b1=0
a 1 = b 1 = 0 a_{1}=b_{1}=0 a1=b1=0 时,方程为:
y ′ = f ( c 1 a 2 x + b 2 y + c 2 ) (24) y'=f(\frac{c_{1}}{a_{2}x+b_{2}y+c_{2}})\tag{24} y=f(a2x+b2y+c2c1)(24)

一阶线性微分方程
Q(x) 为 0

Q ( x ) Q(x) Q(x) 0 0 0,则此时方程为一个一阶齐次线性方程
d y d x + P ( x ) y = 0 (25) \frac{dy}{dx}+P(x)y=0\tag{25} dxdy+P(x)y=0(25)
变量分离易得:
d y y = − P ( x ) d x ln ⁡ y = − ∫ P ( x ) d x (26) \begin{aligned} \frac{dy}{y}&=-P(x)dx\\ \ln y&=-\int P(x)dx \\ \end{aligned} \tag{26} ydylny=P(x)dx=P(x)dx(26)
最终我们可以得到:
y = C e − ∫ P ( x ) d x (27) y=Ce^{-\int P(x)dx} \tag{27} y=CeP(x)dx(27)

Q(x) 不为 0

Q ( x ) Q(x) Q(x) 不为 0 0 0,则此时方程为一个一阶非齐次线性方程
d y d x + P ( x ) y = Q ( x ) (28) \frac{dy}{dx}+P(x)y=Q(x)\tag{28} dxdy+P(x)y=Q(x)(28)
由前面已知齐次方程的通解为:
y = C e − ∫ P ( x ) d x (29) y=Ce^{-\int P(x)dx}\tag{29} y=CeP(x)dx(29)
设:
y = u ( x ) e − ∫ P ( x ) d x (30) y=u(x)e^{-\int P(x)dx}\tag{30} y=u(x)eP(x)dx(30)
则代入原方程可得:
u ′ ( x ) e − ∫ P ( x ) d x − P ( x ) y + P ( x ) y = Q ( x ) (31) u'(x)e^{-\int P(x)dx}-P(x)y+P(x)y=Q(x)\tag{31} u(x)eP(x)dxP(x)y+P(x)y=Q(x)(31)
解得:
u ′ ( x ) = Q ( x ) e − ∫ P ( x ) d x = Q ( x ) e ∫ P ( x ) d x (32) u'(x)=\frac{Q(x)}{e^{-\int P(x)dx}}=Q(x)e^{\int P(x)dx}\tag{32} u(x)=eP(x)dxQ(x)=Q(x)eP(x)dx(32)
积分得:
u ( x ) = ∫ Q ( x ) e ∫ P ( x ) d x d x (33) u(x)=\int Q(x)e^{\int P(x)dx}dx\tag{33} u(x)=Q(x)eP(x)dxdx(33)
最终得到通解为:
y = C e − ∫ P ( x ) d x + e − ∫ P ( x ) d x ∫ Q ( x ) e ∫ P ( x ) d x d x (34) y=Ce^{-\int P(x)dx}+e^{-\int P(x)dx}\int Q(x)e^{\int P(x)dx}dx\tag{34} y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx(34)

全微分方程与积分因子
可以降阶的二阶微分方程
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值