【Ctrl_I】团队日记2:模型训练与HIbernate集成

本文记录了团队研究CNN模型,特别是LeNet的应用,以及在模型训练后与Hibernate的集成过程。团队使用LeNet改进模型进行Gaze Estimation,模型在大部分用户上达到85%以上准确率,但也存在部分用户准确率较低的问题。在模型改进方面,提出优化图像正则化、加入更多头部位置信息和增大数据集规模的建议。在Hibernate集成部分,详细介绍了配置、创建工具类和DAO层的步骤,最后通过测试验证了整合的正确性。
摘要由CSDN通过智能技术生成

这周团队计划共同研究次论文以及视觉追踪的模型,然后更新后台框架进度:

 

所以首先是对最基本的Tensorflow去构建模型的方法简单学习:

1.CNN基本模型

对于CNN的模型之前的理论基础知识已经有过学习,便不再展开讲解,只是讲一下基本结构:

卷积神经网络CNN的结构一般包含这几个层:

  • 输入层:用于数据的输入
  • 卷积层:使用卷积核进行特征提取和特征映射
  • 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射
  • 池化层:进行下采样,对特征图稀疏处理,减少数据运算量。
  • 全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失
  • 输出层:用于输出结果

当然中间还可以使用一些其他的功能层:

  • 归一化层(Batch Normalization):在CNN中对特征的归一化
  • 切分层:对某些(图片)数据的进行分区域的单独学习
  • 融合层:对独立进行特征学习的分支进行融合

对于基本的CNN之上,还有许多改进的模型

1.LeNet:

第一个成功用于手写字符识别的模型,卷积层自带激励函数
我们的视线追踪模型基本由LeNet改进,重点是在全链接层没有直接训练而是加入了头部角度h一起训练

2.其余的还有AlexNet,VGGNet,GoogleNet,ResNet等。就不再展开叙述了。

 

2.TensorFlow基本函数理解和实践

卷积层:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

'''
input:输入是一个4维格式的(图像)数据,数据的 shape 由 data_format 决定:当 data_format
 为“NHWC”输入数据的shape表示为[batch, in_height, in_width, in_channels],分别表示训练时一
个batch的图片数量、图片高度、 图片宽度、 图像通道数。当 data_format 为“NHWC”输入数据的shape表
示为[batch, in_channels, in_height, in_width]

filter:卷积核是一个4维格式的数据:shape表示为:[height,width,in_channels, out_channels],
分别表示卷积核的高、宽、深度(与输入的in_channels应相同)、输出 feature map的个数(即卷积核的个
数)。

strides:表示步长:一个长度为4的一维列表,每个元素跟data_format互相对应,表示在data_format每一
维上的移动步长。当输入的默认格式为:“NHWC”,则 strides = [batch , in_height , in_width, 
in_channels]。其中 batch 和 in_channels 要求一定为1,即只能在一个样本的一个通道上的特征图上进
行移动,in_height , in_width表示卷积核在特征图的高度和宽度上移动的布长,即 
strideheightstrideheight 和 stridewidthstridewidth 。


padding:表示填充方式:“SAME”表示采用填充的方式,简单地理解为以0填充边缘,当stride为1时,输入和
输出的维度相同;“VALID”表示采用不填充的方式,多余地进行丢弃。


data_format:表示输入的格式,有两种分别为:“NHWC”和“NCHW”,默认为“NHWC”
'''

池化层: 

tf.nn.max_pool( value, ksize,strides,padding,data_format=’NHWC’,name=None) 


'''
value:表示池化的输入:一个4维格式的数据,数据的 shape 由 data_format 决定,默认情况下shape 为[batch, height, width, channels]

ksize:表示池化窗口的大小:一个长度为4的一维列表,一般为[1, height, width, 1],因不想在batch和channels上做池化,则将其值设为1。
'''

在完成基本学习以后跑了经典的MNIST数据集识别,直接放代码了,逻辑十分简单,直接根据一些资料改的,注释也很清楚,如果遇到了SSL相关的报错问题可以看我的另一篇博客,或者在最开始的代码部分反注释掉

import ssl
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# try:
#     _create_unverified_https_context = ssl._create_unverified_context
# except AttributeError:
#     pass
# else:
#     ssl._create_default_https_context = _create_unverified_https_context



mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  # 读取图片数据集
sess = tf.InteractiveSession()  # 创建session


# 一,函数声明部分

def weight_variable(shape):
    # 正态分布,标准差为0.1,默认最大为1,最小为-1,均值为0
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    # 创建一个结构为shape矩阵也可以说是数组shape声明其行列,初始化所有值为0.1
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def conv2d(x, W):
    # 卷积遍历各方向步数为1,SAME:边缘外自动补0,遍历相乘
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    # 池化卷积结果(conv2d)池化层采用kernel大小为2*2,步数也为2,周围补0,取最大值。数据量缩小了4倍
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


# 二,定义输入输出结构

# 声明一个占位符,None表示输入图片的数量不定,28*28图片分辨率
xs = tf.placeholder(tf.float32, [None, 28 * 28])
# 类别是0-9总共10个类别,对应输出分类结果
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
# x_image又把xs reshape成了28*28*1的形状,因为是灰色图片,所以通道是1.作为训练时的input,-1代表图片数量不定
x_image = tf.reshape(xs, [-1, 28, 28, 1])

# 三,搭建网络,定义算法公式,也就是forward时的计算

## 第一层卷积操作 ##
# 第一二参数值得卷积核尺寸大小,即patch,第三个参数是图像通道数,第四个参数是卷积核的数目,代表会出现多少个卷积特征图像;
W_conv1 = weight_variable([5, 5, 1, 32])
# 对于每一个卷积核都有一个对应的偏置量。
b_conv1 = bias_variable([32])
# 图片乘以卷积核,并加上偏执量,卷积结果28x28x32
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# 池化结果14x14x32 卷积结果乘以池化卷积核
h_pool1 = max_pool_2x2(h_conv1)

## 第二层卷积操作 ##
# 32通道卷积,卷积出64个特征
w_conv2 = weight_variable([5, 5, 32, 64])
# 64个偏执数据
b_conv2 = bias_variable([64])
# 注意h_pool1是上一层的池化结果,#卷积结果14x14x64
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
# 池化结果7x7x64
h_pool2 = max_pool_2x2(h_conv2)
# 原图像尺寸28*28,第一轮图像缩小为14*14,共有32张,第二轮后图像缩小为7*7,共有64张

## 第三层全连接操作 ##
# 二维张量,第一个参数7*7*64的patch,也可以认为是只有一行7*7*64个数据的卷积,第二个参数代表卷积个数共1024个
W_fc1 = weight_variable([7 * 7 * 64, 1024])
# 1024个偏执数据
b_fc1 = bias_variable([1024])
# 将第二层卷积池化结果reshape成只有一行7*7*64个数据# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# 卷积操作,结果是1*1*1024,单行乘以单列等于1*1矩阵,matmul实现最基本的矩阵相乘,不同于tf.nn.conv2d的遍历相乘,自动认为是前行向量后列向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# dropout操作,减少过拟合,其实就是降低上一层某些输入的权重scale,甚至置为0,升高某些输入的权值,甚至置为2,防止评测曲线出现震荡,个人觉得样本较少时很必要
# 使用占位符,由dropout自动确定scale,也可以自定义,比如0.5,根据tensorflow文档可知,程序中真实使用的值为1/0.5=2,也就是某些输入乘以2,同时某些输入乘以0
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  # 对卷积结果执行dropout操作

## 第四层输出操作 ##
# 二维张量,1*1024矩阵卷积,共10个卷积,对应我们开始的ys长度为10
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# 最后的分类,结果为1*1*10 softmax和sigmoid都是基于logistic分类算法࿰
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值