- 博客(125)
- 资源 (2)
- 收藏
- 关注
原创 dn-detr
摘要:DN group与matching part之间的单向访问设计具有防作弊考量。matching part被禁止访问DN group(含带噪声的真实标注),是为了防止其直接复制答案而丧失独立匹配能力;而允许DN group查看matching part则有助于理解上下文且不会破坏其去噪目标。图中箭头表示loss计算方向,matching part确实无法利用DN group计算loss。这种单向知识流动机制既保障了模型的学习效果,又维持了各模块的功能独立性。(149字)
2025-10-21 11:49:01
196
原创 python profiling
摘要:Python程序性能优化可以通过两种工具分析函数耗时问题。cProfile适用于整体分析,能显示函数CPU耗时但不包含调用关系;line_profiler提供逐行耗时分析,但需手动添加待测函数。后者还支持装饰器方式,使简单代码的分析更优雅。示例代码展示了两种工具的使用方法,包括安装、运行和结果输出步骤,帮助开发者快速定位性能瓶颈。(149字)
2025-06-15 20:04:51
270
原创 PETR和位置编码
这种两步编码的设计实际上是将固定的位置编码(pos2posemb3d)和可学习的位置编码(query_embedding)相结合,既保留了位置的几何信息,又允许模型学习任务相关的位置表示。对于二维目标检测来说,对像素位置做编码就行了(sin_embed), 如下图的backbone这个分支,对于三维目标检测,petr对每个像素还做了三维位置编码(coords_position_embeding), 下图最下面一个分支。最终给transformer的key_pos = 3d位置编码+ 2d像素位置编码。
2025-05-01 17:45:20
1077
原创 mono3d汇总
部分公司2d目标标注的local yaw:目标与相机z同向重叠:90度,与右侧方向的相机x轴重叠:0度。α>0:目标物体的朝向偏向相机光轴的 左侧(逆时针方向)。α
2025-01-16 14:14:37
1234
原创 nanodet笔记
网络stride8,16,32的feature 经过共享卷积处理后cat在一起再transpose,直接产生shape为(B, n_grid, n_class+8*4),其中B为batchsize, n_grid为feature map上点的个数, 4:表示top,bottom, left, right 4个值,每个值使用8个bin的概率表示.这里简单记录下nanodet的结构.loss有3部分构成。
2024-03-16 18:24:27
495
原创 leetcode 图相关的题
遍历链表(只dfs(node))->遍历二叉树(dfs(node.left), dfs(node.right)-> 遍历多叉树 for(n:nodes) dfs(n) ->遍历图:for(n:nodes) visited[n]=True,dfs(n)图相关知识有leetcode。
2023-09-30 18:35:44
228
原创 dbscan
算法的阈值只有两个,距离阈值eps, 最小点个数minPts。如果一个点在eps为半径的园内,包含点的个数>=minPts,那么这个点以及这个圆内的点可以作为一个cluster。Density-based spatial clustering of applications with noise (DBSCAN), 基于密度的聚类方法。由于需要获取某个点附近k个点,所以会用kdtree做查询优化。
2023-07-28 16:35:25
334
原创 nv12, yuv420, yuv444转换关系
其中前[:h, :]为y, [h : h * 3/2, :]为u和v,先u,再v. cvtColor转换flag:cv2.COLORYUV2RGB_I420.排列顺序: [y, y, y, y, …, y, u, u, u, …u, v, v, v, …, v], shape:(h*3/2, w),yuv444的排列顺序:[y, y, y, y, …, y, u, u,u,u,…u, v,v,v,v,…排列顺序:[y,y,y,y,…,y, u,v,u,v,…对于宽高为(w,h)的图像。
2023-07-28 12:19:06
1170
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
2