poj 1742 多重背包,可行性

点击打开链接

#include <iostream>
#include <algorithm>
#include <cstdio> 
#include <cstring>
using namespace std;
const int M =1100;
long n,m;
int a[M],c[M];
bool dp[M*M]; // 只需判断能否凑成某个价钱k即可 

// 给出物品种数和价值  每种物品数量有限  求这些物品能凑成不超过m的价钱有多少种

// 等价于 背包体积最大为m  求能填满 1~m 背包中成立的个数  

//  c[i]*a[i]>=m时 即物品可以看成无限件 就不需要拆分 -> 完全背包 

void CompletePack(int value)
{
	
	for(int j=value;j<=m;j++)
	{
		dp[j]=dp[j]||dp[j-value];  
	}
	
}
void ZeroPack(int value)
{
	for(int j=m;j>=value;j--)
	{
		dp[j]=dp[j]||dp[j-value];
	}
}
void MultiplePack(int value,int num)
{
	if(value*num>=m) 
	CompletePack(value);
	
	else
	{
		int k=1;
		while(k<=num)
		{
			ZeroPack(value*k);
			num-=k;
			k=(k<<1);	
		}
		if(num)
		{
			ZeroPack(value*num);
		}
	}
		
}
int main()
{

	while(scanf("%d%d",&n,&m)&&(n||m))
	{
	
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&a[i]);  //价值 
		}
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&c[i]); // 件数 
		}
		dp[0]=1; // 前0件能装满体积为0的背包 
		for(int j=1;j<=m;j++)
		{
			dp[j]=0;
		}
		for(int i=1;i<=n;i++)
		{
			if(c[i]) 
			MultiplePack(a[i],c[i]);
		}
		int ans=0;
		for(int j=1;j<=m;j++)
		{
			if(dp[j])
			ans++;
		}
		printf("%d\n",ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值