题意:n个数,一个group为下标连续的数&&不同的数最多只能有k个,问k=1~n时的最小分组? n,ai<=1e5
为了对每个固定的L,找到最后一个满足的r 使得[L,r]内不同的数正好为k。
主席树维护前缀i时,从下标L=1开始 二分找到最后一个满足k的r 令L=pos+1继续二分,每次L最至少前进k格(n/1+n/2+...n/n=nlogn) 则复杂度为O(nlogn*logn*logn) TLE
利用主席树维护后缀i中下标为l~r内不同的数,若l~mid的sum>k 则下标r在左子树中 否则k-=sum 下标在右子树中 找到第一个不满足的r即可 复杂度O(n*logn*logn)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+20;
struct node{
int l,r,sum;
//sum:后缀i中:下标l~r不同的数的个数
}T[N*40];
int x,y,n,m,a[N],last[N];
int cnt,root[N];
int build(int l,int r)
{
int rt=++cnt;
T[rt].sum=0,T[rt].l=T[rt].r=0;
if(l==r) return rt;
int m=(l+r)>>1;
T[rt].l=build(l,m);
T[rt].r=build(m+1,r);
return rt;
}
void update(int l,int r,int &x,int y,int v,int pos)
{
T[++cnt]=T[y],T[cnt].sum+=v,x=cnt;
if(l==r) return;
int m=(l+r)>>1;
if(m>=pos)
update(l,m,T[x].l,T[y].l,v,pos);
else
update(m+1,r,T[x].r,T[y].r,v,pos);
}
int query(int c,int l,int r,int k)
{
if(l==r) return l;
int m=(l+r)>>1;
int sum=T[T[c].l].sum;
if(sum>k)
return query(T[c].l,l,m,k);
else
return query(T[c].r,m+1,r,k-sum);
}
int main()
{
while(cin>>n)
{
cnt=0;
memset(last,-1,sizeof(last));
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
build(1,n+1);//要返回第一个不满足的r 所以n+1
//维护后缀i,l~r内不同的数的个数
for(int i=n;i>=1;i--)
{
int v=a[i];
if(last[v]==-1)
update(1,n+1,root[i],root[i+1],1,i);
else
{
update(1,n+1,root[i],root[i+1],-1,last[v]);
update(1,n+1,root[i],root[i],1,i);
}
last[v]=i;
}
for(int k=1;k<=n;k++)
{
int L=1,ans=0;
while(L<=n)
{
int pos=query(root[L],1,n+1,k);
L=pos;
ans++;
}
printf("%d ",ans);
}
printf("\n");
}
return 0;
}