Codeforces 810C Do you want a date 枚举

点击打开链接

题意:

n个数,n<=3e5,2^n-1个非空集合 F(a)定义为集合a中最大值-最小值之差 求所有F(a)之和mod1e9+7 
//sort后 枚举最小值为i,则ans+=(a[j]-a[i])*2^(j-i-1) (j=i+1~n) 
//化解:一个数a[i]总共减了:a[i]*(2^0~2^(n-i-1)) 加了a[i]*(2^0+~2^(i-2)) 

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=3e5+20;
const int M=3e5+5;
const ll mod=1e9+7;
ll n,a[N];
ll pw2[N];
int main()
{
	pw2[0]=1;
	for(int i=1;i<=M;i++)
		pw2[i]=(pw2[i-1]*2ll)%mod;
	while(cin>>n)
	{
		for(int i=1;i<=n;i++)
			scanf("%I64d",&a[i]);
		sort(a+1,a+1+n);
		ll ans=0;
		for(int i=1;i<=n;i++)
		{
			ll sub,add;
			if(i==n)
				sub=0;
			else
				sub=(a[i]*(pw2[n-i]-1)+mod)%mod;
			if(i==1)
				add=0;
			else
				add=(a[i]*(pw2[i-1]-1)+mod)%mod;
			ans=(ans-sub+mod)%mod;
			ans=(ans+add)%mod;
		}
		cout<<ans<<endl;
		
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值