首先先推第一个
∑d|nϕ(d)=n
我是这样想的每一个数字都可以分解为多个素数的乘积,那么
n=Pa11×Pa22......Pakk
假设这个时候我们将n乘Pk那么就变成了
n=Pa11×Pa22......Pak+1k
我们发现对于n来说其他的不是Pk的因数完全没有收到影响,那么其他的没有Pk的就可以表示为
f(n)=∑d|n∑t|d,t|Pkμ(t)ϕ(d)
这个地方的莫比乌斯函数起到的作用就是令d和 P_k互质,这样的话 P_k就不会对f(n)造成影响
因为欧拉函数是积性函数那么令
F(n)=∑d|nϕ(d)
那么
F(n)=f(n)×(ϕ(1)+ϕ(Pk)+ϕ(P2k)......+ϕ(P