【莫比乌斯反演】关于ΣΦ(d|n)=n和Σμ(d|n)=0

本文深入探讨了莫比乌斯反演原理,通过解析ΣΦ(d|n)=n和Σμ(d|n)=0这两个数学关系,揭示了莫比乌斯函数在数论中的应用和重要性。
摘要由CSDN通过智能技术生成

首先先推第一个

d|nϕ(d)=n

我是这样想的每一个数字都可以分解为多个素数的乘积,那么
n=Pa11×Pa22......Pakk

假设这个时候我们将n乘Pk那么就变成了
n=Pa11×Pa22......Pak+1k

我们发现对于n来说其他的不是Pk的因数完全没有收到影响,那么其他的没有Pk的就可以表示为
f(n)=d|nt|d,t|Pkμ(t)ϕ(d)
这个地方的莫比乌斯函数起到的作用就是令d和 P_k互质,这样的话 P_k就不会对f(n)造成影响
因为欧拉函数是积性函数那么令
F(n)=d|nϕ(d)

那么
F(n)=f(n)×(ϕ(1)+ϕ(Pk)+ϕ(P2k)......+ϕ(P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值