前言
由于莫比乌斯反演的应用非常广泛,内容很多但是结论却并不复杂。然而如果没有接触过的话是很难得到超过暴力分的分数,最近的省选也经常考到,所以开单篇记一下公式。
一道经典的莫比乌斯反演题:
求:
∑ni=1∑mj=1[gcd(i,j)==d]
也就是说有多少对(i,j)的gcd为d。
莫比乌斯反演公式
具体的证明就不证了,具体可以看度娘,这里只给出结论。
约数的莫比乌斯反演:
若:
f(n)=∑d|ng(d)
则:
g(n)=∑d|nμ(d)f(nd)
倍数的莫比乌斯反演:
若:
f(n)=∑n|dg(d)
则:
g(n)=∑n|dμ(dn)f(d)
莫比乌斯函数
公式中的
μ(x)
是莫比乌斯函数,它是这样定义的:
⎧⎩⎨⎪⎪⎪⎪⎪⎪μ(x)=1μ(x)=0μ(x)=−1μ(x)=1x=1x存在平方因子x有奇数个质因子(包括x是质数)x有偶数个质因子
接下来介绍一种线性筛的做法来筛出莫比乌斯函数。
if (i % p[j] == 0)
这句话非常关键,也是为什么这个筛法是线性筛的原因。
同样把这个程序的
μ[x]
去掉就是单纯的质数筛,同样这个质数筛由于if (i % p[j] == 0)
的存在,也是一个线性筛。
void mobius()
{
int i,j; mbs[1] = 1;
fo(i,2,N)
{
if (!vis[i]) {p[++p[0]] = i; mbs[i] = -1;}
for (j = 1;j <= p[0] && i * p[j] <= N; j++)
{
vis[i*p[j]] = 1;
if (i % p[j] == 0) {mbs[i*p[j]] = 0; break;}
mbs[i*p[j]] = - mbs[i];
}
}
}
构造
现在不妨记
g(x)=∑ni=1∑mj=1[gcd(i,j)==d]
。
然后我们构造一个
f(x)
,这里我们用到第二组莫比乌斯反演公式,那么
f(x)
是什么呢?根据公式
f(x)
应该是若干个
g(x)
的和。接下来记
N=min(n,m)
,也就是gcd的上限,那么我们可以得到:(这里的d不要和公式的d搞混)
f(d)=g(d)+g(2d)+g(3d)+...+g(⌊Nd⌋)
即:
f(d)=∑ni=1∑mj=1[gcd(i,j)%d==0]
写成公式的形式就是:
f(d)=∑d|pg(p)(p<=N)
好极了!我们完成了构造,现在让我们反演一下来看看结果如何:
g(d)=∑d|pμ(pd)f(p)
现在看起来问题转换成了如何求
f(x)
。
f(x)
指的是满足gcd(i,j)是d的倍数的数对,显然有
f(x)=⌊nx⌋⌊mx⌋
。至此,前言中的问题就可迎刃而解了。