机器学习实战 第十章 K-均值聚类算法 Python3代码

本文介绍了K-均值聚类算法,这是一种无监督学习算法,通过迭代更新质心来聚类数据。博主将《机器学习实战》一书中的Python2代码迁移到Python3,并提供了算法的流程、数据处理和测试过程的概述。实验代码可在提供的GitHub链接中获取。
摘要由CSDN通过智能技术生成

最近在看《机器学习实战》这本书,书中的机器学习算法都很经典,写的也很详细,是一本不错的书,适合夯实基础,不过有一点缺陷就是书中使用的Python2的编译器代码,多多少少会与当前主流的Python3有些出入,所以小编在看书之余也准备将本书中的代码重新敲一遍到Python3,一起学习,一起进步,本栏目持续更新,知道本博主看完敲完这本书。

K-均值聚类算法

K-均值聚类算法是一种无监督的学习算法,首先通过随机生成簇来进行聚类,然后每一次更新簇中的质心,从而重新对更新的簇进行重新聚类,周而复始,迭代足够的次数后,得到最合适的簇。下图为K-均值聚类算法的基本流程:

算法代码详解

1.K-均值聚类的一般流程

(1)收集和处理数据:将数据进行结构化,变成代码可处理的数据结构

(2)分析数据:通过算法进行数据分析,本文使用的是k-均值算法

(3)训练算法:由于K-均值算法属于无监督学习,所以不需要训练算法,即无监督学习没有训练过程

(4)测试算法:用来测试准确度

2.收集和处理数据

本部分

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值