[机器学习基础][笔记] 一、鸢尾花分类

鸢尾花分类

作者:解琛
时间:2020 年 8 月 28 日

一、环境搭建

python 修改 pip 的源

1.1 Jupyter Notebook

sudo apt install jupyter-notebook

Jupyter Notebook 是可以在浏览器中运行代码的交互环境。这个工具在探索性数据分析方面非常有用,在数据科学家中广为使用。

pip3 install numpy scipy matplotlib ipython scikit-learn pandas mglearn

1.2 numpy

NumPy 是 Python 科学计算的基础包之一。它的功能包括多维数组、高级数学函数(比如线性代数运算和傅里叶变换),以及伪随机数生成器。

import numpy as np
x = np.array([[1, 2, 3], [4, 5, 6]])
print("x:\n{}".format(x))

x:
[[1 2 3]
 [4 5 6]]

NumPy 的核心功能是 ndarray 类,即多维( n 维)数组。数组的所有元素必须是同一类型。

经常用到 NumP,对于 NumPy ndarray 类的对象,我们将其简称为“NumPy 数组”或“数组”。

1.3 Scipy

SciPy 是 Python 中用于科学计算的函数集合。它具有线性代数高级程序、数学函数优化、信号处理、特殊数学函数和统计分布等多项功能。

from scipy import sparse
# 创建一个二维NumPy数组,对角线为1,其余都为0
eye = np.eye(4)
print("NumPy array:\n{}".format(eye))
# 将NumPy数组转换为CSR格式的SciPy稀疏矩阵
# 只保存非零元素
sparse_matrix = sparse.csr_matrix(eye)
print("\nSciPy sparse CSR matrix:\n{}".format(sparse_matrix))

NumPy array:
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]

SciPy sparse CSR matrix:
  (0, 0)	1.0
  (1, 1)	1.0
  (2, 2)	1.0
  (3, 3)	1.0

SciPy 中最重要的是 scipy.sparse:它可以给出稀疏矩阵(sparse matrice),稀疏矩阵是 scikit-learn 中数据的另一种表示方法。

如果想保存一个大部分元素都是 0 的二维数组,就可以使用稀疏矩阵。

通常来说,创建稀疏数据的稠密表示(dense representation)是不可能的(因为太浪费内存),所以我们需要直接创建其稀疏表示(sparse representation)。

data = np.ones(4)
row_indices = np.arange
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

解琛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值