基于双重对比学习与解剖辅助监督的少镜头医学图像分割

文章提出了双重对比学习(DCL)方法,结合医学图像的解剖知识,提高小样本医学图像分割的数据利用率和网络学习的鉴别性特征。通过迭代预测模块进一步优化分割精度。在多个医学图像数据集上的实验显示,该方法在肝脏、肾脏、脾脏等器官的分割任务中超越了现有SOTA技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dual Contrastive Learning with Anatomical Auxiliary Supervision for Few-shot Medical Image Segmentation

  • 【ECCV,2022】
  • 研究背景:
    (1)为了缓解数据标注和模型泛化问题的压力,小样本学习被提出并运用到图像研究领域,其中小样本分割主要解决基于小样本学习思想的语义分割相关任务;
    (2)由于当前大多数小样本分割方法倾向于依赖含有目标类别的图像,而医学图像CT或MRI中含有一部分不存在目标类别的图像(本研究称之为非目标图片),这样容易导致本就数据集较小的情况下数据利用率降低;
    (3)非目标切片上不相关组织信息其实就是目标器官类别的背景知识,若将它们作为可用的负样本信息应用于对比学习,便能极大地增强网络学习可鉴别性特征的能力。
  • 主要贡献
    (1)提出充分利用非目标类别的医学图像解剖知识信息,从原型和上下文的角度构造双重对比学习(DCL),以鼓励网络学习更有鉴别性的特征,提高数据利用率;
    (2)设计约束性的迭代预测模块,利用预测结果与支持掩码的关系进行约束性迭代优化查询集预测结果,以进一步从背景特征中鉴别出目标类别的特征,提高分割精确度;
    (3)所提出的方法在两个著名的少样本医学图像数据集上取得了优于SOTA少样本分割网络的分割精确度。
    在这里插入图片描述
  • 实验结果
    与其他经典和最先进的方法相比,在肝脏、左肾、右肾、脾脏分割的小样本任务中,该方法可以获得更加精确的分割效果,充分表明了双重对比学习和解剖辅助监督对于少样本医学图像分割的促进作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值